Telegram Group & Telegram Channel
🚨 NVIDIA показала будущее ИИ на GTC Paris

Вот 7 самых интересных анонсов 👇

1️⃣ NVL72 — система из 72 Blackwell GPU

NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4

2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг

3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир

4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.

5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами

6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.

7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.

@ai_machinelearning_big_data


#NVIDIA #GTC



tg-me.com/ai_machinelearning_big_data/7772
Create:
Last Update:

🚨 NVIDIA показала будущее ИИ на GTC Paris

Вот 7 самых интересных анонсов 👇

1️⃣ NVL72 — система из 72 Blackwell GPU

NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4

2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг

3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир

4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.

5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами

6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.

7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.

@ai_machinelearning_big_data


#NVIDIA #GTC

BY Machinelearning






Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7772

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Machinelearning from id


Telegram Machinelearning
FROM USA