Telegram Group & Telegram Channel
تحلیل سری زمانی با پایتون
خب، کم کم وارد قسمت جذاب بحث خودمان یعنی مدلسازی مالی با پایتون می شویم. به نظر من کلیدی ترین بحث در مدلسازی مالی و اقتصادی مواجهه با سری های زمانی است. سری زمان یعنی تقریبا همه چیز.
به یک توالی یا دنباله از متغیرهای تصادفی که در فاصله های زمانی ثابت نمونه برداری شده باشند، اصطلاحاً سری زمانی یا پیشامد تصادفی در مقطع زمان می‌گویند. به عبارت دیگر منظور از یک سری زمانی مجموعه‌ای از داده‌های آماری است که در فواصل زمانی مساوی و منظمی جمع‌آوری شده باشند.
هدف اصلی در تحلیل سری زمانی در مورد یک پدیده، ایجاد یک مدل آماری برای داده‌های وابسته به زمان براساس اطلاعات گذشته آن پدیده است. با این کار امکان پیش‌بینی در مورد آینده پدیده مورد بحث میسر می‌شود. به بیان دیگر تحلیل سری زمانی،‌ ایجاد مدلی گذشته‌نگر است تا امکان تصمیمات آینده‌نگر را فراهم سازد.
مثال‌ها
سری زمانی در اقتصاد،
مانند صادرات در ماه‌های متوالی، متوسط درآمد در ماه‌های متوالی، GDP طی سال های مختلف و …
سری زمانی در مالی مانند قیمت سهام در روزهای متوالی، شاخص بازار طی روز های مختلف و ...
سری زمانی بازاریابی، تجزیه و تحلیل ارقام فروش در هفته یا ماه‌ها متوالی و ...
سری زمانی در هواشناسی: میزان بارندگی طی فصول سال در سال های مختلف، درجه هوا طی روز های سال و ...
معمولا می‌توان الگوی رفتار یا مدل تغییرات یک سری زمانی را به چهار مولفه تفکیک کرد. «روند» (Trend)، «تناوب» (Cyclic)، «فصل» (Seasonal) و «تغییرات نامعمول» (Irregular). اگر نمودار مربوط به داده‌های سری زمانی را برحسب زمان ترسیم کنیم می‌توانیم این مولفه‌ها را تشخیص دهیم در نتیجه شناخت بهتری از داده‌های سری زمانی خواهیم داشت.
در پایتون برای استفاده و تحلیل سری های زمانی کتابخانه های مختلفی طراحی شده است. از مهترین این کتابخانه ها به Numpy و Pandas می توان اشاره کرد. در پست های آتی راجع به نصب کتابخانه های مذکور و شیوه استفاده از آن ها برای استفاده در مالی خواهیم پرداخت.
با ما باشید تا در ادامه به بحث جذاب سری های زمانی در پایتون بپردازیم.

#پایتون_مالی
#سری_زمانی

پایتون برای مالی در تلگرام https://www.tg-me.com/in/Python4Finance/com.python4finance
پایتون برای مالی در بله https://ble.im/in/Python4Finance/com.python4finance
4



tg-me.com/python4finance/47
Create:
Last Update:

تحلیل سری زمانی با پایتون
خب، کم کم وارد قسمت جذاب بحث خودمان یعنی مدلسازی مالی با پایتون می شویم. به نظر من کلیدی ترین بحث در مدلسازی مالی و اقتصادی مواجهه با سری های زمانی است. سری زمان یعنی تقریبا همه چیز.
به یک توالی یا دنباله از متغیرهای تصادفی که در فاصله های زمانی ثابت نمونه برداری شده باشند، اصطلاحاً سری زمانی یا پیشامد تصادفی در مقطع زمان می‌گویند. به عبارت دیگر منظور از یک سری زمانی مجموعه‌ای از داده‌های آماری است که در فواصل زمانی مساوی و منظمی جمع‌آوری شده باشند.
هدف اصلی در تحلیل سری زمانی در مورد یک پدیده، ایجاد یک مدل آماری برای داده‌های وابسته به زمان براساس اطلاعات گذشته آن پدیده است. با این کار امکان پیش‌بینی در مورد آینده پدیده مورد بحث میسر می‌شود. به بیان دیگر تحلیل سری زمانی،‌ ایجاد مدلی گذشته‌نگر است تا امکان تصمیمات آینده‌نگر را فراهم سازد.
مثال‌ها
سری زمانی در اقتصاد،
مانند صادرات در ماه‌های متوالی، متوسط درآمد در ماه‌های متوالی، GDP طی سال های مختلف و …
سری زمانی در مالی مانند قیمت سهام در روزهای متوالی، شاخص بازار طی روز های مختلف و ...
سری زمانی بازاریابی، تجزیه و تحلیل ارقام فروش در هفته یا ماه‌ها متوالی و ...
سری زمانی در هواشناسی: میزان بارندگی طی فصول سال در سال های مختلف، درجه هوا طی روز های سال و ...
معمولا می‌توان الگوی رفتار یا مدل تغییرات یک سری زمانی را به چهار مولفه تفکیک کرد. «روند» (Trend)، «تناوب» (Cyclic)، «فصل» (Seasonal) و «تغییرات نامعمول» (Irregular). اگر نمودار مربوط به داده‌های سری زمانی را برحسب زمان ترسیم کنیم می‌توانیم این مولفه‌ها را تشخیص دهیم در نتیجه شناخت بهتری از داده‌های سری زمانی خواهیم داشت.
در پایتون برای استفاده و تحلیل سری های زمانی کتابخانه های مختلفی طراحی شده است. از مهترین این کتابخانه ها به Numpy و Pandas می توان اشاره کرد. در پست های آتی راجع به نصب کتابخانه های مذکور و شیوه استفاده از آن ها برای استفاده در مالی خواهیم پرداخت.
با ما باشید تا در ادامه به بحث جذاب سری های زمانی در پایتون بپردازیم.

#پایتون_مالی
#سری_زمانی

پایتون برای مالی در تلگرام https://www.tg-me.com/in/Python4Finance/com.python4finance
پایتون برای مالی در بله https://ble.im/in/Python4Finance/com.python4finance

BY Python4Finance




Share with your friend now:
tg-me.com/python4finance/47

View MORE
Open in Telegram


Python4Finance Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Python4Finance from in


Telegram Python4Finance
FROM USA