Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/tensorflowblog/457
Create:
Last Update:

🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA

BY TensorFlow








Share with your friend now:
tg-me.com/tensorflowblog/457

View MORE
Open in Telegram


TensorFlow Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

TensorFlow from in


Telegram TensorFlow
FROM USA