Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

This Week's Presentation:

🔹 Title: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

🔸 Presenter: Arash Marioriyad

🌀 Abstract:
Diffusion models have achieved significant success in text-to-image generation. However, alleviating the misalignment between text prompts and generated images remains a challenging issue.
This presentation will focus on two observed causes of misalignment: concept ignorance and concept mis-mapping. To address these issues, we will discuss CoMat, an end-to-end diffusion model fine-tuning strategy that uses an image-to-text concept matching mechanism.
Using only 20K text prompts to fine-tune SDXL, CoMat significantly outperforms the baseline SDXL model on two text-to-image alignment benchmarks, achieving state-of-the-art performance.

📄 Paper:
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

Session Details:
- 📅 Date: Sunday, 8 September 2024
- 🕒 Time: 3:30 - 5:00 PM (GMT+3:30)
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/131
Create:
Last Update:

💠 Compositional Learning Journal Club

This Week's Presentation:

🔹 Title: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

🔸 Presenter: Arash Marioriyad

🌀 Abstract:
Diffusion models have achieved significant success in text-to-image generation. However, alleviating the misalignment between text prompts and generated images remains a challenging issue.
This presentation will focus on two observed causes of misalignment: concept ignorance and concept mis-mapping. To address these issues, we will discuss CoMat, an end-to-end diffusion model fine-tuning strategy that uses an image-to-text concept matching mechanism.
Using only 20K text prompts to fine-tune SDXL, CoMat significantly outperforms the baseline SDXL model on two text-to-image alignment benchmarks, achieving state-of-the-art performance.

📄 Paper:
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

Session Details:
- 📅 Date: Sunday, 8 September 2024
- 🕒 Time: 3:30 - 5:00 PM (GMT+3:30)
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/RIMLLab/131

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

telegram from in


Telegram RIML Lab
FROM USA