Telegram Group & Telegram Channel
"Как ищете клиентов?"

Это простой вопрос в комментарии на предыдущий пост про экономику кейсов с LLM под капотом. Ответ будет чуть посложнее.

Я лично (почти) не беру проекты на end-to-end разработку. Вместо этого я помогаю командам и клиентам, которые разрабатывают системы с LLM под капотом.

Основная компания - TimeToAct Austria, которая предоставляет услуги по консалтингу и разработке. У них с клиентами в области LLM/AI получилось очень забавно - их слишком много. Настолько много, что можно выбирать самые интересные проекты, и при этом еще иметь сильно больше запросов на разработку, чем есть команд.

Как так получилось? Это результат работы нескольких стратегий.

Во-первых, эффективный маркетинг в области AI. Видели официальные релизы моих LLM Benchmarks (например, ноябрьский)? Бенчмарки работают настолько хорошо для создания репутации и привлечения клиентов, что теперь публикуются не только на сайте TimeToAct Austria, а сразу на основной странице сайта всей группы компаний в целом.

Enterprise RAG Challenge (та часть второго раунда, которая пройдет в Европе)- тоже пример маркетинга в области AI с очень хорошей отдачей. Еще есть ряд местных нишевых конференций и активностей в DACH, которые работают аналогичным образом.

И на каждом мероприятии обязательно упоминаются материалы из LLM Benchmarks и AI Case Portfolio, что создает репутацию и хорошо влияет на конверсию. Эти же материалы обязательно присутствуют во всех презентациям клиентам. Даже ребята из sales (без опыта AI/LLM) обязательно используют их после экспресс-инструктажа по правильному использованию.

Во-вторых, в процессе активно используется самая ценная валюта - портфель из успешных реализаций кейсов с LLM под капотом. К ним еще прилагается список набитых шишек и всевозможных грабель.

Этот портфель используется как для привлечения клиентов, так и для эффективной работы с ними потом.

Когда-то я брался за все проекты подряд (вроде корпоративных RAG-ов в режиме чат-бота) и пытался реализовать их целиком силами AI Core команд (ребята, которые умеют выстраивать системы с LLM под капотом). Тогда кейсы набирались очень медленно.

По мере набивания шишек и накопления опыта стала вырисовываться система. А общение с разными командами в США и Европе позволило набрать еще больше статистики про то, что работает, а что - не очень. И теперь, как только появляется компания, которая хочет решить какую-то проблему при помощи LLM, запускается следующий процесс:

(1) Директора и лиды компании зазываются на “AI Case Mapping” Workshop, где я разбираю их проблемы и хотелки и сопоставляю с известными граблями и кейсами

(2) В процессе из всего набора проблем компании выбираются те проблемы, которые можно решить выгоднее и быстрее всего. Я повидал уже много разных грабель, поэтому сразу задаю вопросы, которые могут заранее подсветить проблемы и сэкономить время.

(3) В итоге получается приоритизированный список проблем на реализацию. У каждой проблемы есть измеримая выгода и минимальный риск.

(4) Я помогаю реализовать прототип, который доказывает применимость LLM для решения выбранной проблемы (или наоборот). На этом этапе “вскрываются” основные оставшиеся риски.

(4) Причем делается не только прототип (его можно и на LangChain сделать), но и выстраивается процесс, который позволит контроллируемо повышать качество системы. Так прототип превращается в LLM Core.

(5) Дальше LLM Core передается на реализацию командам AI Business Integration, которые уже должны будут встроить новые возможности в бизнес-процессы [1].

Окончание тут.
29🔥15👍10🤔2🤝1



tg-me.com/llm_under_hood/468
Create:
Last Update:

"Как ищете клиентов?"

Это простой вопрос в комментарии на предыдущий пост про экономику кейсов с LLM под капотом. Ответ будет чуть посложнее.

Я лично (почти) не беру проекты на end-to-end разработку. Вместо этого я помогаю командам и клиентам, которые разрабатывают системы с LLM под капотом.

Основная компания - TimeToAct Austria, которая предоставляет услуги по консалтингу и разработке. У них с клиентами в области LLM/AI получилось очень забавно - их слишком много. Настолько много, что можно выбирать самые интересные проекты, и при этом еще иметь сильно больше запросов на разработку, чем есть команд.

Как так получилось? Это результат работы нескольких стратегий.

Во-первых, эффективный маркетинг в области AI. Видели официальные релизы моих LLM Benchmarks (например, ноябрьский)? Бенчмарки работают настолько хорошо для создания репутации и привлечения клиентов, что теперь публикуются не только на сайте TimeToAct Austria, а сразу на основной странице сайта всей группы компаний в целом.

Enterprise RAG Challenge (та часть второго раунда, которая пройдет в Европе)- тоже пример маркетинга в области AI с очень хорошей отдачей. Еще есть ряд местных нишевых конференций и активностей в DACH, которые работают аналогичным образом.

И на каждом мероприятии обязательно упоминаются материалы из LLM Benchmarks и AI Case Portfolio, что создает репутацию и хорошо влияет на конверсию. Эти же материалы обязательно присутствуют во всех презентациям клиентам. Даже ребята из sales (без опыта AI/LLM) обязательно используют их после экспресс-инструктажа по правильному использованию.

Во-вторых, в процессе активно используется самая ценная валюта - портфель из успешных реализаций кейсов с LLM под капотом. К ним еще прилагается список набитых шишек и всевозможных грабель.

Этот портфель используется как для привлечения клиентов, так и для эффективной работы с ними потом.

Когда-то я брался за все проекты подряд (вроде корпоративных RAG-ов в режиме чат-бота) и пытался реализовать их целиком силами AI Core команд (ребята, которые умеют выстраивать системы с LLM под капотом). Тогда кейсы набирались очень медленно.

По мере набивания шишек и накопления опыта стала вырисовываться система. А общение с разными командами в США и Европе позволило набрать еще больше статистики про то, что работает, а что - не очень. И теперь, как только появляется компания, которая хочет решить какую-то проблему при помощи LLM, запускается следующий процесс:

(1) Директора и лиды компании зазываются на “AI Case Mapping” Workshop, где я разбираю их проблемы и хотелки и сопоставляю с известными граблями и кейсами

(2) В процессе из всего набора проблем компании выбираются те проблемы, которые можно решить выгоднее и быстрее всего. Я повидал уже много разных грабель, поэтому сразу задаю вопросы, которые могут заранее подсветить проблемы и сэкономить время.

(3) В итоге получается приоритизированный список проблем на реализацию. У каждой проблемы есть измеримая выгода и минимальный риск.

(4) Я помогаю реализовать прототип, который доказывает применимость LLM для решения выбранной проблемы (или наоборот). На этом этапе “вскрываются” основные оставшиеся риски.

(4) Причем делается не только прототип (его можно и на LangChain сделать), но и выстраивается процесс, который позволит контроллируемо повышать качество системы. Так прототип превращается в LLM Core.

(5) Дальше LLM Core передается на реализацию командам AI Business Integration, которые уже должны будут встроить новые возможности в бизнес-процессы [1].

Окончание тут.

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/468

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

telegram from in


Telegram LLM под капотом
FROM USA