Telegram Group & Telegram Channel
๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Backdooring Bias into Text-to-Image Models

๐Ÿ”ธ Presenter: Mehrdad Aksari Mahabadi

๐ŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

๐Ÿ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ



tg-me.com/RIMLLab/140
Create:
Last Update:

๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Backdooring Bias into Text-to-Image Models

๐Ÿ”ธ Presenter: Mehrdad Aksari Mahabadi

๐ŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

๐Ÿ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/140

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via โ€œchannelsโ€, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

What is Telegram?

Telegramโ€™s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

telegram from it


Telegram RIML Lab
FROM USA