Telegram Group & Telegram Channel
#клиентспросил Кейс про товары, которые невозможно найти.

Недавно сдали новый кейс. С сюжетным поворотом и двумя языковыми моделями. #case

Проблема. У клиента магазин на сорок тысяч продуктовых позиций, а поиск там хромает. Пользователи не находят товары на свои запросы и уходят с сайта. Выручка страдает.

Отдел маркетинга пытается исправлять ситуацию дописыванием ключевых слов вручную на 10k активных позиций, но не успевает. Vector search пока не могут по ряду причин. Они попросили помочь.

Решение. Отправили им выгрузку с ключевыми фразами на каждый из их активных продуктов. Ключевые фразы, по 5-7 на продукт, идентифицируют разные сценарии, в которых человеку понадобится именно этот продукт.

Если загрузить эти слова как дополнительный индекс в их систему поиска, то запрос про “дырку на 8мм” теперь покажет дрели и сверла на 8мм. Это лучшее, что тут можно было предложить без смены системы поиска.

Под капотом

Клиент прислал дамп из продуктовой БД в виде SQL queries на 250 мегабайт. Дамп в формате Oracle, а сами таблицы и колонки на иностранном языке (не английский), да еще и нормализованы в 8 таблиц с триггерами. Продуктовые описания, естественно, тоже не на английском.

Решение было в два захода

Сначала конвертировали эти дампы в маленькую и читаемую SQLite БД. ChatGPT-4 написал скрипт, который бы конвертировал абстрактные Oracle SQL Create/Insert statements (скрипты для создния с нуля БД Oracle) в аналогичные для SQLite.

А потом попросили ChatGPT-4 еще и переименовать все таблицы и колонки из странного наречия в удобоваримый английский.

Получилась удобная и понятная БД, которую можно как смотреть локально, так и вызывать из скриптов.

На этом этапе ChatGPT-4 видел схему базы данных (что не являлось секретом), но не видел самих данных.

Потом просто прогнали по каждому продукту скрипт, который собирал промпт с полным описанием продукта и просил языковую модель сформулировать ключевые слова для поиска. Использовали Mistral 7B OpenChat-3.5, которая на сервере с NVidia 3090 отрабатывала по 15 продуктов в секунду.

Результаты сравнили на небольшой выборке продуктов вручную с GPT-4, принципиальной разницы в качестве не было.

Клиенту не было важно использовать локальные модели, но благодаря им получилось быстро получить результаты, не беспокоиться о бюджете, не тратить время на борьбу с сетевыми ошибками и rate limits (что бывает с ChatGPT).

Оценка Mistral 7B OpenChat-3.5 в данной задаче: 5 из 5. Будем использовать снова!


Update от 5 декабря 👋: клиенту не понравилась часть генерируемых ключевых слов. Для улучшения качества я использовал последние наработки из других проектов (см кейс про агента-писателя и про агента, который программирует себя). Тут:

- ChatGPT прошелся по истории слов и документам поисковой системы, и сжал всю информацию в компактную методичку для написания ключевых слов
- OpenChat-3.5 по этой методичке нагенерировал тестовых слов
- ChatGPT аккуратно просмотрел результаты, оценил их и написал вторую методичку. Она была про то, как выявлять плохие слова и улучшать типичные косяки, которые допускает OpenChat-3.5
- В рабочей системе слова генерируются теперь в два прохода Mistral-7B OpenChat-3.5, который работает по инструкциям от ChatGPT

Результат проверяли вручную, система пока работает лучше человека. Предварительный второй отзыв клиента - годится.

Но если вдруг будут еще пожелания по улучшению, я просто перепишу методички с нуля с учетом новых фактов. "

ChatGPT, перепиши мне методичку с учетом новых отзывов от клиента! Внимательно прочитай все документы, которые прикреплены ниже.

- Исходная методичка для переписывания
- Новые отзывы от клиента
- Краткое описание проекта и продукта (JTBD)
- Исходная таблица с примерами продуктов и сгенерированных ключевых слов
- Описание pipeline продукта и краткие заметки про типичные косяки Mistral 7B OpenChat


Ваш, @llm_under_hood 🤗

---
PS: Другие посты из серии #клиентспросил:
- Кейс с ChatGPT про 10.000 € в месяц
- Нишевый lead generator для B2B продаж
- Платформа для автоматизации бизнес-процессов в компании
🔥30👍52🎉1



tg-me.com/llm_under_hood/201
Create:
Last Update:

#клиентспросил Кейс про товары, которые невозможно найти.

Недавно сдали новый кейс. С сюжетным поворотом и двумя языковыми моделями. #case

Проблема. У клиента магазин на сорок тысяч продуктовых позиций, а поиск там хромает. Пользователи не находят товары на свои запросы и уходят с сайта. Выручка страдает.

Отдел маркетинга пытается исправлять ситуацию дописыванием ключевых слов вручную на 10k активных позиций, но не успевает. Vector search пока не могут по ряду причин. Они попросили помочь.

Решение. Отправили им выгрузку с ключевыми фразами на каждый из их активных продуктов. Ключевые фразы, по 5-7 на продукт, идентифицируют разные сценарии, в которых человеку понадобится именно этот продукт.

Если загрузить эти слова как дополнительный индекс в их систему поиска, то запрос про “дырку на 8мм” теперь покажет дрели и сверла на 8мм. Это лучшее, что тут можно было предложить без смены системы поиска.

Под капотом

Клиент прислал дамп из продуктовой БД в виде SQL queries на 250 мегабайт. Дамп в формате Oracle, а сами таблицы и колонки на иностранном языке (не английский), да еще и нормализованы в 8 таблиц с триггерами. Продуктовые описания, естественно, тоже не на английском.

Решение было в два захода

Сначала конвертировали эти дампы в маленькую и читаемую SQLite БД. ChatGPT-4 написал скрипт, который бы конвертировал абстрактные Oracle SQL Create/Insert statements (скрипты для создния с нуля БД Oracle) в аналогичные для SQLite.

А потом попросили ChatGPT-4 еще и переименовать все таблицы и колонки из странного наречия в удобоваримый английский.

Получилась удобная и понятная БД, которую можно как смотреть локально, так и вызывать из скриптов.

На этом этапе ChatGPT-4 видел схему базы данных (что не являлось секретом), но не видел самих данных.

Потом просто прогнали по каждому продукту скрипт, который собирал промпт с полным описанием продукта и просил языковую модель сформулировать ключевые слова для поиска. Использовали Mistral 7B OpenChat-3.5, которая на сервере с NVidia 3090 отрабатывала по 15 продуктов в секунду.

Результаты сравнили на небольшой выборке продуктов вручную с GPT-4, принципиальной разницы в качестве не было.

Клиенту не было важно использовать локальные модели, но благодаря им получилось быстро получить результаты, не беспокоиться о бюджете, не тратить время на борьбу с сетевыми ошибками и rate limits (что бывает с ChatGPT).

Оценка Mistral 7B OpenChat-3.5 в данной задаче: 5 из 5. Будем использовать снова!


Update от 5 декабря 👋: клиенту не понравилась часть генерируемых ключевых слов. Для улучшения качества я использовал последние наработки из других проектов (см кейс про агента-писателя и про агента, который программирует себя). Тут:

- ChatGPT прошелся по истории слов и документам поисковой системы, и сжал всю информацию в компактную методичку для написания ключевых слов
- OpenChat-3.5 по этой методичке нагенерировал тестовых слов
- ChatGPT аккуратно просмотрел результаты, оценил их и написал вторую методичку. Она была про то, как выявлять плохие слова и улучшать типичные косяки, которые допускает OpenChat-3.5
- В рабочей системе слова генерируются теперь в два прохода Mistral-7B OpenChat-3.5, который работает по инструкциям от ChatGPT

Результат проверяли вручную, система пока работает лучше человека. Предварительный второй отзыв клиента - годится.

Но если вдруг будут еще пожелания по улучшению, я просто перепишу методички с нуля с учетом новых фактов. "

ChatGPT, перепиши мне методичку с учетом новых отзывов от клиента! Внимательно прочитай все документы, которые прикреплены ниже.

- Исходная методичка для переписывания
- Новые отзывы от клиента
- Краткое описание проекта и продукта (JTBD)
- Исходная таблица с примерами продуктов и сгенерированных ключевых слов
- Описание pipeline продукта и краткие заметки про типичные косяки Mistral 7B OpenChat


Ваш, @llm_under_hood 🤗

---
PS: Другие посты из серии #клиентспросил:
- Кейс с ChatGPT про 10.000 € в месяц
- Нишевый lead generator для B2B продаж
- Платформа для автоматизации бизнес-процессов в компании

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/201

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

telegram from it


Telegram LLM под капотом
FROM USA