Telegram Group & Telegram Channel
Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗
👍66🔥3314🥰2😁1



tg-me.com/llm_under_hood/544
Create:
Last Update:

Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/544

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

telegram from it


Telegram LLM под капотом
FROM USA