Telegram Group & Telegram Channel
یادگیری ماشین (Machine learning ) و کاربرد آن در مالی و اقتصاد
ماشین لرنینگ یا همان یادگیری ماشین یکی از کاربردهای هوش مصنوعی (AI) است که سیستم ها را قادر می سازد به طور خودکار و از طریق تجربه و بدون برنامه ریزی، یاد بگیرند و خود را بهبود دهند. تمرکز این تکنولوژی بر توسعه برنامه های کامپیوتری می باشد که به داده ها دسترسی دارند و می توانند از این داده ها استفاده کرده تا خودشان یاد بگیرند.
یادگیری ماشین ارتباط نزدیکی با آمار محاسباتی دارد (و اغلب با آن هم پوشانی دارد)، تمرکز این شاخه نیز پیش بینی کردن توسط رایانه است و پیوند محمکی با بهینه سازی ریاضی دارد، که آن هم روش ها، تئوری ها و کاربردهایی را وارد میدان می کند. یادگیری ماشین گاهی اوقات با داده کاوی ادغام می شود. در واقع یکی از شروط یادگیری صحیح، داشتن اطلاعات و استفاده بهینه از آنهاست.
یادگیری ماشین دارای کاربردهای فزاینده‌ای در خودکارسازی تصمیم‌گیری‌های مالی بوده و هست، طوری که هم‌اکنون از ماشین‌ها و روبات‌ها برای ارزیابی اعتبارپذیری مشتریان بانک‌ها یا اعتمادپذیری بیمه‌گذاران در صنعت بیمه استفاده می‌شود. در حال حاضر هوش مصنوعی این امکان را برای مؤسسات و سازمان‌ها فراهم آورده است تا با پردازش حجم عظیمی از اطلاعات و داده‌ها در کوتاه‌ترین زمان و بالاترین دقت ممکن بهترین و دقیق‌ترین تصویر ممکن از وضعیت مشتریان و شرکای بالقوه را تهیه و قدرت تصمیم‌گیری فوق‌العاده‌ای را به صاحبان صنایع یا مدیران شرکت‌ها اعطا کنند و به طور مثال الگوهای غیرعادی معاملات مالی را با هدف احتمال‌سنجی اختلاس و کلاه‌برداری کنترل نمایند.
یکی از راهکارهای ایجاد معاملات الگورتیمی خوب، استفاده از یادگیری ماشین برای بهبود استراتژی های سرمایه گذاری است.
در پست های آتی به طور مفصل به مبحث یادگیری ماشین ، داده کاوی و معاملات الگوریتمی خواهیم پرداخت.
با ما همراه باشید.

#یادگیری_ماشین
#آموزش_پایتون


پایتون برای مالی در تلگرام https://www.tg-me.com/jp/Python4Finance/com.python4finance

پایتون برای مالی در بله https://ble.im/jp/Python4Finance/com.python4finance



tg-me.com/python4finance/39
Create:
Last Update:

یادگیری ماشین (Machine learning ) و کاربرد آن در مالی و اقتصاد
ماشین لرنینگ یا همان یادگیری ماشین یکی از کاربردهای هوش مصنوعی (AI) است که سیستم ها را قادر می سازد به طور خودکار و از طریق تجربه و بدون برنامه ریزی، یاد بگیرند و خود را بهبود دهند. تمرکز این تکنولوژی بر توسعه برنامه های کامپیوتری می باشد که به داده ها دسترسی دارند و می توانند از این داده ها استفاده کرده تا خودشان یاد بگیرند.
یادگیری ماشین ارتباط نزدیکی با آمار محاسباتی دارد (و اغلب با آن هم پوشانی دارد)، تمرکز این شاخه نیز پیش بینی کردن توسط رایانه است و پیوند محمکی با بهینه سازی ریاضی دارد، که آن هم روش ها، تئوری ها و کاربردهایی را وارد میدان می کند. یادگیری ماشین گاهی اوقات با داده کاوی ادغام می شود. در واقع یکی از شروط یادگیری صحیح، داشتن اطلاعات و استفاده بهینه از آنهاست.
یادگیری ماشین دارای کاربردهای فزاینده‌ای در خودکارسازی تصمیم‌گیری‌های مالی بوده و هست، طوری که هم‌اکنون از ماشین‌ها و روبات‌ها برای ارزیابی اعتبارپذیری مشتریان بانک‌ها یا اعتمادپذیری بیمه‌گذاران در صنعت بیمه استفاده می‌شود. در حال حاضر هوش مصنوعی این امکان را برای مؤسسات و سازمان‌ها فراهم آورده است تا با پردازش حجم عظیمی از اطلاعات و داده‌ها در کوتاه‌ترین زمان و بالاترین دقت ممکن بهترین و دقیق‌ترین تصویر ممکن از وضعیت مشتریان و شرکای بالقوه را تهیه و قدرت تصمیم‌گیری فوق‌العاده‌ای را به صاحبان صنایع یا مدیران شرکت‌ها اعطا کنند و به طور مثال الگوهای غیرعادی معاملات مالی را با هدف احتمال‌سنجی اختلاس و کلاه‌برداری کنترل نمایند.
یکی از راهکارهای ایجاد معاملات الگورتیمی خوب، استفاده از یادگیری ماشین برای بهبود استراتژی های سرمایه گذاری است.
در پست های آتی به طور مفصل به مبحث یادگیری ماشین ، داده کاوی و معاملات الگوریتمی خواهیم پرداخت.
با ما همراه باشید.

#یادگیری_ماشین
#آموزش_پایتون


پایتون برای مالی در تلگرام https://www.tg-me.com/jp/Python4Finance/com.python4finance

پایتون برای مالی در بله https://ble.im/jp/Python4Finance/com.python4finance

BY Python4Finance


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python4finance/39

View MORE
Open in Telegram


Python4Finance Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Python4Finance from jp


Telegram Python4Finance
FROM USA