Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
The Next Big Thing

Инженеры Disney Research не скрывают восторга, создавая дроидов из вселенной «Звёздных войн». А теперь, благодаря Антуану Пирроне, каждый может собрать мини-дроида примерно за 400 долларов. И хотя он выглядит как забавная игрушка, подобные роботы имеют все шансы перешагнуть границы тематических парков и войти в повседневную жизнь.

Похоже, в робототехнике произошел тот самый скачок из количества в качество, о котором талдычили на философии. Машины теперь без особых усилий осваивают навыки, которые раньше приходилось жестко прописывать в коде.

Исследователи из Columbia Engineering недавно продемонстрировали это наглядно: их роботы самостоятельно изучают структуру собственного тела и принципы движения, просто наблюдая за собой через камеру. Буквально смотрят в зеркало и познают себя!

Компания Figure показала Helix — универсальную модель машинного обучения типа Vision-Language-Action (VLA) для гуманоидных роботов. Эта система одновременно обрабатывает изображения и команды на обычном человеческом языке, а затем управляет роботами в реальном времени. Благодаря Helix роботы могут узнавать и работать с тысячами обычных домашних предметов. Кроме того, Figure объявила о создании BotQ — завода по производству роботов. Для начала он будет выпускать до 12 000 гуманоидов ежегодно.

А на прошлой неделе Google DeepMind анонсировала сразу две новые модели: Gemini Robotics с технологией Vision-Language-Action (VLA) и Gemini Robotics-ER с технологией Embodied Reasoning. Обе они работают на базе Google Gemini — многомодальной базовой модели, которая понимает текст, голос и изображения, отвечает на вопросы и дает рекомендации.

Gemini Robotics, в DeepMind назвали "продвинутой системой зрения-языка-действия". Она воспринимает ту же информацию, что и базовая Gemini, но может преобразовывать ее в команды для физических действий робота. Причем она совместима с любым железом. На сайте проекта есть впечатляющие демонстрации работы системы. Интересно узнать больше? Загляните в статью "Внедрение ИИ в физический мир".

К слову, не только Google развивает робототехнику. Apple тоже проявляет интерес — компания показала милую и услужливую роботизированную лампу, и, по слухам, работает над созданием андроидов.

Если нейронные VLA-сети пойдут по тому же пути развития, что и языковые модели (LLM), то скоро в интернете появятся открытые нейросети для управления роботами. И да, эта технология может быть гораздо доступнее, чем многие думают сейчас. По крайней мере частично.

Конечно, собрать в гараже человекоподобного робота пока нереально, но вот с роботизированными манипуляторами дела обстоят иначе. Открытых проектов уже хватает: PAROL6, toolboxrobotics, arctosrobotics, Thor — и это лишь верхушка айсберга. С учетом развития программного обеспечения, идея собрать такую роборуку становится все заманчивее. Лично я планирую научить свою готовить не хуже робошефа Зиппи.

#ИИ #робототехника #DIY #будущее



tg-me.com/SantryBlog/655
Create:
Last Update:

The Next Big Thing

Инженеры Disney Research не скрывают восторга, создавая дроидов из вселенной «Звёздных войн». А теперь, благодаря Антуану Пирроне, каждый может собрать мини-дроида примерно за 400 долларов. И хотя он выглядит как забавная игрушка, подобные роботы имеют все шансы перешагнуть границы тематических парков и войти в повседневную жизнь.

Похоже, в робототехнике произошел тот самый скачок из количества в качество, о котором талдычили на философии. Машины теперь без особых усилий осваивают навыки, которые раньше приходилось жестко прописывать в коде.

Исследователи из Columbia Engineering недавно продемонстрировали это наглядно: их роботы самостоятельно изучают структуру собственного тела и принципы движения, просто наблюдая за собой через камеру. Буквально смотрят в зеркало и познают себя!

Компания Figure показала Helix — универсальную модель машинного обучения типа Vision-Language-Action (VLA) для гуманоидных роботов. Эта система одновременно обрабатывает изображения и команды на обычном человеческом языке, а затем управляет роботами в реальном времени. Благодаря Helix роботы могут узнавать и работать с тысячами обычных домашних предметов. Кроме того, Figure объявила о создании BotQ — завода по производству роботов. Для начала он будет выпускать до 12 000 гуманоидов ежегодно.

А на прошлой неделе Google DeepMind анонсировала сразу две новые модели: Gemini Robotics с технологией Vision-Language-Action (VLA) и Gemini Robotics-ER с технологией Embodied Reasoning. Обе они работают на базе Google Gemini — многомодальной базовой модели, которая понимает текст, голос и изображения, отвечает на вопросы и дает рекомендации.

Gemini Robotics, в DeepMind назвали "продвинутой системой зрения-языка-действия". Она воспринимает ту же информацию, что и базовая Gemini, но может преобразовывать ее в команды для физических действий робота. Причем она совместима с любым железом. На сайте проекта есть впечатляющие демонстрации работы системы. Интересно узнать больше? Загляните в статью "Внедрение ИИ в физический мир".

К слову, не только Google развивает робототехнику. Apple тоже проявляет интерес — компания показала милую и услужливую роботизированную лампу, и, по слухам, работает над созданием андроидов.

Если нейронные VLA-сети пойдут по тому же пути развития, что и языковые модели (LLM), то скоро в интернете появятся открытые нейросети для управления роботами. И да, эта технология может быть гораздо доступнее, чем многие думают сейчас. По крайней мере частично.

Конечно, собрать в гараже человекоподобного робота пока нереально, но вот с роботизированными манипуляторами дела обстоят иначе. Открытых проектов уже хватает: PAROL6, toolboxrobotics, arctosrobotics, Thor — и это лишь верхушка айсберга. С учетом развития программного обеспечения, идея собрать такую роборуку становится все заманчивее. Лично я планирую научить свою готовить не хуже робошефа Зиппи.

#ИИ #робототехника #DIY #будущее

BY Santry's Singularity blog


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/SantryBlog/655

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

telegram from jp


Telegram Santry's Singularity blog
FROM USA