В репозитории содержится код для экспериментов, показывающих линейность трансформеров. Авторы исследуют механизм, при котором соседние слои декодера (например, в GPT, LLaMA, OPT и BLOOM) оказываются почти линейно зависимыми. Используя Procrustes-метрику, показывается, что выходы последовательных слоев совпадают с точностью ~99% (но лишь при учёте residual connection). Исследователи демонстрируют, что нормировка выхода каждого блока относительно residual-части весьма мала, и это приводит к «линейности» между слоями. Кроме того, в работе изучаются задачи «прореживания» (pruning) слоёв на основе выявленной линейности и замены некоторых блоков их линейными аналогами без значимой потери в качестве. Предложены также регуляризационные приёмы на основе косинусной близости, снижающие линейность для повышения выразительности модели и улучшения результатов на ряде задач (TinyStories, SuperGLUE). Работа может быть полезна исследователям и практикам, занимающимся анализом внутренней структуры больших языковых моделей, а также LLM-инженерам, стремящимся к более эффективным моделям при сохранении качества.
В репозитории содержится код для экспериментов, показывающих линейность трансформеров. Авторы исследуют механизм, при котором соседние слои декодера (например, в GPT, LLaMA, OPT и BLOOM) оказываются почти линейно зависимыми. Используя Procrustes-метрику, показывается, что выходы последовательных слоев совпадают с точностью ~99% (но лишь при учёте residual connection). Исследователи демонстрируют, что нормировка выхода каждого блока относительно residual-части весьма мала, и это приводит к «линейности» между слоями. Кроме того, в работе изучаются задачи «прореживания» (pruning) слоёв на основе выявленной линейности и замены некоторых блоков их линейными аналогами без значимой потери в качестве. Предложены также регуляризационные приёмы на основе косинусной близости, снижающие линейность для повышения выразительности модели и улучшения результатов на ряде задач (TinyStories, SuperGLUE). Работа может быть полезна исследователям и практикам, занимающимся анализом внутренней структуры больших языковых моделей, а также LLM-инженерам, стремящимся к более эффективным моделям при сохранении качества.
Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.
How Does Telegram Make Money?
Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.