Telegram Group & Telegram Channel
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/DevOPSitsec/1470
Create:
Last Update:

📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini

BY DevOps


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/DevOPSitsec/1470

View MORE
Open in Telegram


DevOps Telegram | DID YOU KNOW?

Date: |

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

DevOps from kr


Telegram DevOps
FROM USA