Telegram Group & Telegram Channel
🔥 ​Hugging Face выпустила версию 0.30.0 библиотеки huggingface_hub - это самое крупное обновление за два года!

Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.​

✔️ Основные нововведения:

Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.

В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.

Для интеграции с Python используется пакет xet-core, написанный на Rust, который обрабатывает все низкоуровневые детали.​

Чтобы начать использовать Xet, установите дополнительную зависимость:​
pip install -U huggingface_hub[hf_xet]

После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.​

Доплнительно:
😶 Расширен InferenceClient:
😶 Добавлена поддержка новых провайдеров для инференса: Cerebras и Cohere.
😶 Внедрены асинхронные вызовы для задач инференса (например, text-to-video), что повышает стабильность и удобство работы.
😶 Улучшен CLI
😶 Команда huggingface-cli upload теперь поддерживает wildcards (шаблоны) прямо в пути к файлам (например, huggingface-cli upload my-model *.safetensors вместо опции --include).
😶 Команда huggingface-cli delete-cache получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size).

✔️ Полный список обновлений
✔️Блог
✔️Документация по Xet

@ai_machinelearning_big_data


#huggingface #release #xet
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7162
Create:
Last Update:

🔥 ​Hugging Face выпустила версию 0.30.0 библиотеки huggingface_hub - это самое крупное обновление за два года!

Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.​

✔️ Основные нововведения:

Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.

В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.

Для интеграции с Python используется пакет xet-core, написанный на Rust, который обрабатывает все низкоуровневые детали.​

Чтобы начать использовать Xet, установите дополнительную зависимость:​
pip install -U huggingface_hub[hf_xet]

После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.​

Доплнительно:
😶 Расширен InferenceClient:
😶 Добавлена поддержка новых провайдеров для инференса: Cerebras и Cohere.
😶 Внедрены асинхронные вызовы для задач инференса (например, text-to-video), что повышает стабильность и удобство работы.
😶 Улучшен CLI
😶 Команда huggingface-cli upload теперь поддерживает wildcards (шаблоны) прямо в пути к файлам (например, huggingface-cli upload my-model *.safetensors вместо опции --include).
😶 Команда huggingface-cli delete-cache получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size).

✔️ Полный список обновлений
✔️Блог
✔️Документация по Xet

@ai_machinelearning_big_data


#huggingface #release #xet

BY Machinelearning




Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7162

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Machinelearning from kr


Telegram Machinelearning
FROM USA