Warning: file_put_contents(aCache/aDaily/post/ai_machinelearning_big_data/-7414-7415-7414-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Machinelearning | Telegram Webview: ai_machinelearning_big_data/7414 -
Telegram Group & Telegram Channel
📌Обучение с подкреплением: как языковые модели учатся рассуждать.

Объемная и интересная статья Sebastian Raschka, автора книги "Build a Large Language Model From Scratch" о тенденциях и проблемах современных методов обучения LLM через призму RL.

В мире LLM последние месяцы стали переломными. Релизы GPT-4.5 и Llama 4, вопреки ожиданиям, не вызвали ажиотажа — все потому, что эти модели остались «классическими», без продвинутых методов обучения для рассуждений. Их конкуренты - xAI и Anthropic уже добавили кнопки «расширенного мышления», а OpenAI представила o3 — модель, где упор сделан на стратегическое применение вычислений через обучение с подкреплением. Становится ясно: масштабирование данных и параметров почти исчерпало себя, и будущее за RL.

Основной инструмент RLHF (обучение с подкреплением на основе человеческой обратной связи) давно используется для настройки LLM под предпочтения людей. Но для задач, требующих логики, этого недостаточно.

Здесь на сцену выходит GRPO — модификация алгоритма PPO, которая экономит ресурсы, убирая «критика» (модель оценки вознаграждения). Так создавалась DeepSeek-R1-Zero, ее обучали вообще без этапа SFT, используя только автоматические проверки ответов. Если математическая задача решена верно, модель получает «плюс», если нет — «минус». Такой подход не только дешевле, но и снижает риск «обмана» модели (reward hacking).

Но и RL — не панацея. Исследования показывают, что PPO и GRPO неявно поощряют длинные ответы, даже если те ошибочны. Например, при отрицательном вознаграждении штраф распределяется по токенам, и модель учится растягивать текст, чтобы смягчить наказание.

Решения уже есть: одни команды вводят штрафы за длину, другие меняют расчет преимуществ. А модель L1 от Kaggle и вовсе позволяет пользователям задавать желаемую длину ответа, балансируя между точностью и затратами.

Способность к рассуждениям может возникать и без RL. DeepSeek V3 демонстрирует мыслительные «озарения», хотя ее не обучали специально. Этот факт всерьез ставит под вопрос исключительную роль RL — возможно, все дело в данных, где уже есть цепочки логических шагов.

Тем не менее, RL усиливает эти способности: модели начинают самокорректироваться, использовать внешние инструменты (калькуляторы, поиск) и даже переносить навыки между доменами — от математики до медицины.

Некоторые заявления о прогрессе оказались преувеличены: улучшения на мелких моделях часто нестабильны, а результаты зависят от случайных факторов вроде выбора сида. Кроме того, RL требует внушительных ресурсов (o3 от OpenAI потратила при обучении в 10 раз больше вычислений, чем предыдущая версия)

В итоге, RL остается ключевым направлением, но важно избегать «эйфории». Сочетание RL с автоматической проверкой ответов, контроль длины и гибридные подходы (как в DeepSeek-R1) — вот что приближает нас к моделям, которые не просто генерируют текст, а действительно думают.

🔜 Читать статью в оригинале


@ai_machinelearning_big_data

#AI #ML #LLM #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7414
Create:
Last Update:

📌Обучение с подкреплением: как языковые модели учатся рассуждать.

Объемная и интересная статья Sebastian Raschka, автора книги "Build a Large Language Model From Scratch" о тенденциях и проблемах современных методов обучения LLM через призму RL.

В мире LLM последние месяцы стали переломными. Релизы GPT-4.5 и Llama 4, вопреки ожиданиям, не вызвали ажиотажа — все потому, что эти модели остались «классическими», без продвинутых методов обучения для рассуждений. Их конкуренты - xAI и Anthropic уже добавили кнопки «расширенного мышления», а OpenAI представила o3 — модель, где упор сделан на стратегическое применение вычислений через обучение с подкреплением. Становится ясно: масштабирование данных и параметров почти исчерпало себя, и будущее за RL.

Основной инструмент RLHF (обучение с подкреплением на основе человеческой обратной связи) давно используется для настройки LLM под предпочтения людей. Но для задач, требующих логики, этого недостаточно.

Здесь на сцену выходит GRPO — модификация алгоритма PPO, которая экономит ресурсы, убирая «критика» (модель оценки вознаграждения). Так создавалась DeepSeek-R1-Zero, ее обучали вообще без этапа SFT, используя только автоматические проверки ответов. Если математическая задача решена верно, модель получает «плюс», если нет — «минус». Такой подход не только дешевле, но и снижает риск «обмана» модели (reward hacking).

Но и RL — не панацея. Исследования показывают, что PPO и GRPO неявно поощряют длинные ответы, даже если те ошибочны. Например, при отрицательном вознаграждении штраф распределяется по токенам, и модель учится растягивать текст, чтобы смягчить наказание.

Решения уже есть: одни команды вводят штрафы за длину, другие меняют расчет преимуществ. А модель L1 от Kaggle и вовсе позволяет пользователям задавать желаемую длину ответа, балансируя между точностью и затратами.

Способность к рассуждениям может возникать и без RL. DeepSeek V3 демонстрирует мыслительные «озарения», хотя ее не обучали специально. Этот факт всерьез ставит под вопрос исключительную роль RL — возможно, все дело в данных, где уже есть цепочки логических шагов.

Тем не менее, RL усиливает эти способности: модели начинают самокорректироваться, использовать внешние инструменты (калькуляторы, поиск) и даже переносить навыки между доменами — от математики до медицины.

Некоторые заявления о прогрессе оказались преувеличены: улучшения на мелких моделях часто нестабильны, а результаты зависят от случайных факторов вроде выбора сида. Кроме того, RL требует внушительных ресурсов (o3 от OpenAI потратила при обучении в 10 раз больше вычислений, чем предыдущая версия)

В итоге, RL остается ключевым направлением, но важно избегать «эйфории». Сочетание RL с автоматической проверкой ответов, контроль длины и гибридные подходы (как в DeepSeek-R1) — вот что приближает нас к моделям, которые не просто генерируют текст, а действительно думают.

🔜 Читать статью в оригинале


@ai_machinelearning_big_data

#AI #ML #LLM #RL

BY Machinelearning





Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7414

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Machinelearning from kr


Telegram Machinelearning
FROM USA