Telegram Group & Telegram Channel
Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?



tg-me.com/metaprogramming/406
Create:
Last Update:

Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?

BY Metaprogramming


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/metaprogramming/406

View MORE
Open in Telegram


Metaprogramming Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Metaprogramming from kr


Telegram Metaprogramming
FROM USA