Telegram Group & Telegram Channel
Рост производительности машинного обучения с Rust

В этой статье я хочу поделиться своим опытом создания небольшой платформы для машинного обучения (ML) с нуля, используя язык программирования Rust.

Для моего эксперимента у меня были следующие цели:

1 - Я хотел выяснить, приведет ли переход с Python + PyTorch на Rust + LibTorch (библиотеку C++, используемую в PyTorch) к ощутимому увеличению скорости, особенно в процессе обучения модели. Как мы знаем, модели машинного обучения становятся все больше и требуют все больше вычислительных ресурсов для обучения, что иногда недоступно для обычного человека. Один из способов уменьшить требования к аппаратному обеспечению — найти способ сделать алгоритмы более вычислительно эффективными. Зная, что в PyTorch Python является лишь верхним слоем над LibTorch, мой главный вопрос заключался в том, стоит ли заменять этот верхний слой Python на Rust. План заключался в том, чтобы использовать библиотеку Tch-rs Rust для работы с тензорами и функцией автоградента из DLL LibTorch, которая будет выступать в качестве "калькулятора градиентов", а затем разработать остальную часть с нуля на Rust.

2 - Я хотел, чтобы код был достаточно простым для четкого понимания всех выполняемых операций с линейной алгеброй и позволял легко расширять его при необходимости.

3 - Насколько это возможно, моя платформа должна позволять мне определять модели машинного обучения по структуре, аналогичной стандартной Python/PyTorch.


https://betterprogramming.pub/boosting-machine-learning-performance-with-rust-aab1f3ae1424

👉 @rust_lib



tg-me.com/rust_lib/161
Create:
Last Update:

Рост производительности машинного обучения с Rust

В этой статье я хочу поделиться своим опытом создания небольшой платформы для машинного обучения (ML) с нуля, используя язык программирования Rust.

Для моего эксперимента у меня были следующие цели:

1 - Я хотел выяснить, приведет ли переход с Python + PyTorch на Rust + LibTorch (библиотеку C++, используемую в PyTorch) к ощутимому увеличению скорости, особенно в процессе обучения модели. Как мы знаем, модели машинного обучения становятся все больше и требуют все больше вычислительных ресурсов для обучения, что иногда недоступно для обычного человека. Один из способов уменьшить требования к аппаратному обеспечению — найти способ сделать алгоритмы более вычислительно эффективными. Зная, что в PyTorch Python является лишь верхним слоем над LibTorch, мой главный вопрос заключался в том, стоит ли заменять этот верхний слой Python на Rust. План заключался в том, чтобы использовать библиотеку Tch-rs Rust для работы с тензорами и функцией автоградента из DLL LibTorch, которая будет выступать в качестве "калькулятора градиентов", а затем разработать остальную часть с нуля на Rust.

2 - Я хотел, чтобы код был достаточно простым для четкого понимания всех выполняемых операций с линейной алгеброй и позволял легко расширять его при необходимости.

3 - Насколько это возможно, моя платформа должна позволять мне определять модели машинного обучения по структуре, аналогичной стандартной Python/PyTorch.


https://betterprogramming.pub/boosting-machine-learning-performance-with-rust-aab1f3ae1424

👉 @rust_lib

BY Rust




Share with your friend now:
tg-me.com/rust_lib/161

View MORE
Open in Telegram


Rust Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Rust from kr


Telegram Rust
FROM USA