Telegram Group & Telegram Channel
tencdm

В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.

статья | код



tg-me.com/hse_cs_opensource/102
Create:
Last Update:

tencdm

В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.

статья | код

BY Открытый код ФКН ВШЭ




Share with your friend now:
tg-me.com/hse_cs_opensource/102

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

telegram from kr


Telegram Открытый код ФКН ВШЭ
FROM USA