⭐️А вы знали, что можно легко преобразовать репозиторий GitHub для работы с LLM?
В мире современных технологий, где искусственный интеллект и машинное обучение становятся всё более распространёнными, важно уметь эффективно использовать доступные инструменты.
Одним из таких инструментов является возможность работы с репозиториями на GitHub для обучения и взаимодействия с языковыми моделями (LLM).
👾👾Как это сделать? Если вы хотите адаптировать репозиторий GitHub для работы с LLM, вам нужно лишь внести небольшое изменение в URL.
Вместо стандартного адреса с «hub» замените его на «ingest».
Это простое действие позволит вам интегрировать данные из репозитория в ваши модели, что значительно упростит процесс обработки и анализа информации. 🤖Пример Предположим, у вас есть URL репозитория:
https://github.com/username/repository
Чтобы преобразовать его для работы с LLM, просто замените «hub» на «ingest»:
https://gitingest.com/username/repository
Теперь вы можете использовать этот новый адрес для загрузки данных и обучения вашей модели. 👍🏻👍🏻👍🏻
⭐️А вы знали, что можно легко преобразовать репозиторий GitHub для работы с LLM?
В мире современных технологий, где искусственный интеллект и машинное обучение становятся всё более распространёнными, важно уметь эффективно использовать доступные инструменты.
Одним из таких инструментов является возможность работы с репозиториями на GitHub для обучения и взаимодействия с языковыми моделями (LLM).
👾👾Как это сделать? Если вы хотите адаптировать репозиторий GitHub для работы с LLM, вам нужно лишь внести небольшое изменение в URL.
Вместо стандартного адреса с «hub» замените его на «ingest».
Это простое действие позволит вам интегрировать данные из репозитория в ваши модели, что значительно упростит процесс обработки и анализа информации. 🤖Пример Предположим, у вас есть URL репозитория:
https://github.com/username/repository
Чтобы преобразовать его для работы с LLM, просто замените «hub» на «ingest»:
https://gitingest.com/username/repository
Теперь вы можете использовать этот новый адрес для загрузки данных и обучения вашей модели. 👍🏻👍🏻👍🏻
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.