Telegram Group & Telegram Channel
✔️ ttt-rl (Tic-Tac-Toe Reinforcement Learning)

🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования нейронных сетей. Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.

🔥 Чем интересен?
Минимализм и простота
Весь код написан на чистом C (~400 строк).
Нет зависимостей — только стандартная библиотека.
Идеален для изучения основ RL «с нуля».

Классический подход к RL
Используется метод Temporal Difference (TD) Learnin
Агент обучается через игру (self-play) и обновляет стратегию на основе наград.

Образовательная ценность
Понятная визуализация процесса обучения (таблицы Q-значений).
Пример того, как простая задача помогает понять фундамент RL.

Эффективность
После обучения агент играет почти оптимально, избегая поражений.
Код легко модифицировать для экспериментов (например, изменить размер доски).

📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.

Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).


P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠

Github

@cpluspluc

#rl #ml #ai #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/cpluspluc/997
Create:
Last Update:

✔️ ttt-rl (Tic-Tac-Toe Reinforcement Learning)

🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования нейронных сетей. Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.

🔥 Чем интересен?
Минимализм и простота
Весь код написан на чистом C (~400 строк).
Нет зависимостей — только стандартная библиотека.
Идеален для изучения основ RL «с нуля».

Классический подход к RL
Используется метод Temporal Difference (TD) Learnin
Агент обучается через игру (self-play) и обновляет стратегию на основе наград.

Образовательная ценность
Понятная визуализация процесса обучения (таблицы Q-значений).
Пример того, как простая задача помогает понять фундамент RL.

Эффективность
После обучения агент играет почти оптимально, избегая поражений.
Код легко модифицировать для экспериментов (например, изменить размер доски).

📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.

Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).


P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠

Github

@cpluspluc

#rl #ml #ai #tutorial

BY C++ Academy




Share with your friend now:
tg-me.com/cpluspluc/997

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

telegram from no


Telegram C++ Academy
FROM USA