Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ GitHub Copilot для Xcode запущен для публичного тестирования.

GitHub Copilot для Xcode Chat стал доступен для публичного превью. Для начала работы достаточно учетной записи GitHub.

GitHub Copilot – это ИИ-ассистент, который помогает разработчикам писать код быстрее и точнее. Теперь, помимо дописывания кода, GitHub Copilot для Xcode предлагает интеллектуальные предложения для конкретных задач через интерактивный чат.

Для доступа к GitHub Copilot для Xcode потребуется лицензия Copilot. Есть бесплатный доступ, включающий 2000 итераций автозавершения кода и 50 чат-запросов в месяц.
devblogs.microsoft.com

✔️ OpenAI опубликовала SWE-Lancer: бенчмарк для LLM в кодинге.

SWE-Lancer позиционируется как инструмент оценки производительности языковых моделей в задачах программирования для фрилансеров. Он основан на 1400 фриланс-задачах, собранных из Upwork и репозитория Expensify. Задания варьируются от исправления незначительных ошибок до внедрения крупных функций.

SWE-Lancer предназначен для оценки как отдельных исправлений кода, так и управленческих решений, где модели должны выбирать лучшее предложение из нескольких вариантов. Одной из сильных сторон SWE-Lancer является использование сквозных тестов вместо изолированных модульных операций. Репозиторий бенчмарка ожидается в ближайшее время.
arxiv.org

✔️ X повышает цены на Premium+ после выпуска Grok 3.

X (ех-Twitter) значительно повысила цену на план подписки Premium+, дающий доступ к Grok 3 от xAI. Она подорожала почти до 50 долларов в месяц.

Теперь, чтобы пользоваться "deep search" и "reasoning", надо оформить отдельный план SuperGrok через приложение Grok.

Согласно сайту поддержки X, месячная подписка на Premium+ в США теперь стоит 50 долларов, а годовая – 350 долларов. Это уже второе повышение цен на план Premium+ за последние пару месяцев. В декабре компания подняла цену с 16 до 22 долларов в месяц. Таким образом, новая цена более чем вдвое превышает текущую стоимость подписки.
techcrunch.com

✔️ Native Sparse Attention - революция в механизмах внимания от Deepseek.

NSA (Natively Sparse Attention) — новый механизм внимания, предложенный на заменуFull Attention, который значительно ускоряет обработку длинных последовательностей текста без потери качества модели.
NSA использует динамическую иерархическую стратегию, которая сочетает сжатие токенов на грубом уровне с точным отбором ключевых токенов. Это позволяет сохранить глобальное понимание контекста и локальную точность. NSA поддерживает сквозное обучение, совместим с GQA и MQA, что делает его пригодным не только для инференса, но и для обучения.
Модели, обученные с использованием NSA показали 9х ускорение при прямом распространении и 6х при обратном для последовательностей длиной 64к токенов относительно Full Attention. В декодировании - 11х.
arxiv.org

✔️ Мира Мурати готова рассказать миру, над чем она работает.

Мира Мурати, ex-CTO OpenAI, покинула свой пост в сентябре 2024, заявив о желании "создать время и пространство для собственных исследований". И вот стало известно, что она – CEO компании Thinking Machines Lab. Ее миссия – разработка первоклассного AI, полезного и доступного для всех.

В команду Thinking Machines Lab вошли известные исследователи и ученые, в основном из OpenAI. Среди них – экс-вице-президент по исследованиям Баррет Зоф, руководитель по мультимодальным исследованиям Александр Кириллов, руководитель специальных проектов Джон Лакман и ведущий исследователь Люк Мец. Главным научным сотрудником станет Джон Шульман, один из ключевых создателей ChatGPT, ранее работавший в OpenAI и Anthropic. Есть специалисты из Google и Mistral AI.

Команда уже работает над рядом проектов в офисе в Сан-Франциско. Хотя конкретные продукты пока неясны, Thinking Machines Lab не планирует создавать копии ChatGPT или Claude. Цель – AI-модели, оптимизирующие сотрудничество между человеком и AI, что Мурати считает главным препятствием в развитии отрасли.
wired.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/github_code/354
Create:
Last Update:

✔️ GitHub Copilot для Xcode запущен для публичного тестирования.

GitHub Copilot для Xcode Chat стал доступен для публичного превью. Для начала работы достаточно учетной записи GitHub.

GitHub Copilot – это ИИ-ассистент, который помогает разработчикам писать код быстрее и точнее. Теперь, помимо дописывания кода, GitHub Copilot для Xcode предлагает интеллектуальные предложения для конкретных задач через интерактивный чат.

Для доступа к GitHub Copilot для Xcode потребуется лицензия Copilot. Есть бесплатный доступ, включающий 2000 итераций автозавершения кода и 50 чат-запросов в месяц.
devblogs.microsoft.com

✔️ OpenAI опубликовала SWE-Lancer: бенчмарк для LLM в кодинге.

SWE-Lancer позиционируется как инструмент оценки производительности языковых моделей в задачах программирования для фрилансеров. Он основан на 1400 фриланс-задачах, собранных из Upwork и репозитория Expensify. Задания варьируются от исправления незначительных ошибок до внедрения крупных функций.

SWE-Lancer предназначен для оценки как отдельных исправлений кода, так и управленческих решений, где модели должны выбирать лучшее предложение из нескольких вариантов. Одной из сильных сторон SWE-Lancer является использование сквозных тестов вместо изолированных модульных операций. Репозиторий бенчмарка ожидается в ближайшее время.
arxiv.org

✔️ X повышает цены на Premium+ после выпуска Grok 3.

X (ех-Twitter) значительно повысила цену на план подписки Premium+, дающий доступ к Grok 3 от xAI. Она подорожала почти до 50 долларов в месяц.

Теперь, чтобы пользоваться "deep search" и "reasoning", надо оформить отдельный план SuperGrok через приложение Grok.

Согласно сайту поддержки X, месячная подписка на Premium+ в США теперь стоит 50 долларов, а годовая – 350 долларов. Это уже второе повышение цен на план Premium+ за последние пару месяцев. В декабре компания подняла цену с 16 до 22 долларов в месяц. Таким образом, новая цена более чем вдвое превышает текущую стоимость подписки.
techcrunch.com

✔️ Native Sparse Attention - революция в механизмах внимания от Deepseek.

NSA (Natively Sparse Attention) — новый механизм внимания, предложенный на заменуFull Attention, который значительно ускоряет обработку длинных последовательностей текста без потери качества модели.
NSA использует динамическую иерархическую стратегию, которая сочетает сжатие токенов на грубом уровне с точным отбором ключевых токенов. Это позволяет сохранить глобальное понимание контекста и локальную точность. NSA поддерживает сквозное обучение, совместим с GQA и MQA, что делает его пригодным не только для инференса, но и для обучения.
Модели, обученные с использованием NSA показали 9х ускорение при прямом распространении и 6х при обратном для последовательностей длиной 64к токенов относительно Full Attention. В декодировании - 11х.
arxiv.org

✔️ Мира Мурати готова рассказать миру, над чем она работает.

Мира Мурати, ex-CTO OpenAI, покинула свой пост в сентябре 2024, заявив о желании "создать время и пространство для собственных исследований". И вот стало известно, что она – CEO компании Thinking Machines Lab. Ее миссия – разработка первоклассного AI, полезного и доступного для всех.

В команду Thinking Machines Lab вошли известные исследователи и ученые, в основном из OpenAI. Среди них – экс-вице-президент по исследованиям Баррет Зоф, руководитель по мультимодальным исследованиям Александр Кириллов, руководитель специальных проектов Джон Лакман и ведущий исследователь Люк Мец. Главным научным сотрудником станет Джон Шульман, один из ключевых создателей ChatGPT, ранее работавший в OpenAI и Anthropic. Есть специалисты из Google и Mistral AI.

Команда уже работает над рядом проектов в офисе в Сан-Франциско. Хотя конкретные продукты пока неясны, Thinking Machines Lab не планирует создавать копии ChatGPT или Claude. Цель – AI-модели, оптимизирующие сотрудничество между человеком и AI, что Мурати считает главным препятствием в развитии отрасли.
wired.com

@ai_machinelearning_big_data

#news #ai #ml

BY Github




Share with your friend now:
tg-me.com/github_code/354

View MORE
Open in Telegram


Github Telegram | DID YOU KNOW?

Date: |

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Github from sa


Telegram Github
FROM USA