Telegram Group & Telegram Channel
📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7738
Create:
Last Update:

📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI

BY Machinelearning








Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7738

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Machinelearning from sa


Telegram Machinelearning
FROM USA