Telegram Group & Telegram Channel
یادگیری ماشین (Machine learning ) و کاربرد آن در مالی و اقتصاد
ماشین لرنینگ یا همان یادگیری ماشین یکی از کاربردهای هوش مصنوعی (AI) است که سیستم ها را قادر می سازد به طور خودکار و از طریق تجربه و بدون برنامه ریزی، یاد بگیرند و خود را بهبود دهند. تمرکز این تکنولوژی بر توسعه برنامه های کامپیوتری می باشد که به داده ها دسترسی دارند و می توانند از این داده ها استفاده کرده تا خودشان یاد بگیرند.
یادگیری ماشین ارتباط نزدیکی با آمار محاسباتی دارد (و اغلب با آن هم پوشانی دارد)، تمرکز این شاخه نیز پیش بینی کردن توسط رایانه است و پیوند محمکی با بهینه سازی ریاضی دارد، که آن هم روش ها، تئوری ها و کاربردهایی را وارد میدان می کند. یادگیری ماشین گاهی اوقات با داده کاوی ادغام می شود. در واقع یکی از شروط یادگیری صحیح، داشتن اطلاعات و استفاده بهینه از آنهاست.
یادگیری ماشین دارای کاربردهای فزاینده‌ای در خودکارسازی تصمیم‌گیری‌های مالی بوده و هست، طوری که هم‌اکنون از ماشین‌ها و روبات‌ها برای ارزیابی اعتبارپذیری مشتریان بانک‌ها یا اعتمادپذیری بیمه‌گذاران در صنعت بیمه استفاده می‌شود. در حال حاضر هوش مصنوعی این امکان را برای مؤسسات و سازمان‌ها فراهم آورده است تا با پردازش حجم عظیمی از اطلاعات و داده‌ها در کوتاه‌ترین زمان و بالاترین دقت ممکن بهترین و دقیق‌ترین تصویر ممکن از وضعیت مشتریان و شرکای بالقوه را تهیه و قدرت تصمیم‌گیری فوق‌العاده‌ای را به صاحبان صنایع یا مدیران شرکت‌ها اعطا کنند و به طور مثال الگوهای غیرعادی معاملات مالی را با هدف احتمال‌سنجی اختلاس و کلاه‌برداری کنترل نمایند.
یکی از راهکارهای ایجاد معاملات الگورتیمی خوب، استفاده از یادگیری ماشین برای بهبود استراتژی های سرمایه گذاری است.
در پست های آتی به طور مفصل به مبحث یادگیری ماشین ، داده کاوی و معاملات الگوریتمی خواهیم پرداخت.
با ما همراه باشید.

#یادگیری_ماشین
#آموزش_پایتون


پایتون برای مالی در تلگرام https://www.tg-me.com/sa/Python4Finance/com.python4finance

پایتون برای مالی در بله https://ble.im/sa/Python4Finance/com.python4finance



tg-me.com/python4finance/39
Create:
Last Update:

یادگیری ماشین (Machine learning ) و کاربرد آن در مالی و اقتصاد
ماشین لرنینگ یا همان یادگیری ماشین یکی از کاربردهای هوش مصنوعی (AI) است که سیستم ها را قادر می سازد به طور خودکار و از طریق تجربه و بدون برنامه ریزی، یاد بگیرند و خود را بهبود دهند. تمرکز این تکنولوژی بر توسعه برنامه های کامپیوتری می باشد که به داده ها دسترسی دارند و می توانند از این داده ها استفاده کرده تا خودشان یاد بگیرند.
یادگیری ماشین ارتباط نزدیکی با آمار محاسباتی دارد (و اغلب با آن هم پوشانی دارد)، تمرکز این شاخه نیز پیش بینی کردن توسط رایانه است و پیوند محمکی با بهینه سازی ریاضی دارد، که آن هم روش ها، تئوری ها و کاربردهایی را وارد میدان می کند. یادگیری ماشین گاهی اوقات با داده کاوی ادغام می شود. در واقع یکی از شروط یادگیری صحیح، داشتن اطلاعات و استفاده بهینه از آنهاست.
یادگیری ماشین دارای کاربردهای فزاینده‌ای در خودکارسازی تصمیم‌گیری‌های مالی بوده و هست، طوری که هم‌اکنون از ماشین‌ها و روبات‌ها برای ارزیابی اعتبارپذیری مشتریان بانک‌ها یا اعتمادپذیری بیمه‌گذاران در صنعت بیمه استفاده می‌شود. در حال حاضر هوش مصنوعی این امکان را برای مؤسسات و سازمان‌ها فراهم آورده است تا با پردازش حجم عظیمی از اطلاعات و داده‌ها در کوتاه‌ترین زمان و بالاترین دقت ممکن بهترین و دقیق‌ترین تصویر ممکن از وضعیت مشتریان و شرکای بالقوه را تهیه و قدرت تصمیم‌گیری فوق‌العاده‌ای را به صاحبان صنایع یا مدیران شرکت‌ها اعطا کنند و به طور مثال الگوهای غیرعادی معاملات مالی را با هدف احتمال‌سنجی اختلاس و کلاه‌برداری کنترل نمایند.
یکی از راهکارهای ایجاد معاملات الگورتیمی خوب، استفاده از یادگیری ماشین برای بهبود استراتژی های سرمایه گذاری است.
در پست های آتی به طور مفصل به مبحث یادگیری ماشین ، داده کاوی و معاملات الگوریتمی خواهیم پرداخت.
با ما همراه باشید.

#یادگیری_ماشین
#آموزش_پایتون


پایتون برای مالی در تلگرام https://www.tg-me.com/sa/Python4Finance/com.python4finance

پایتون برای مالی در بله https://ble.im/sa/Python4Finance/com.python4finance

BY Python4Finance


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python4finance/39

View MORE
Open in Telegram


Python4Finance Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

Python4Finance from sa


Telegram Python4Finance
FROM USA