Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in diffusion models, like Stable Diffusion, have shown impressive image generation capabilities, but ensuring precise alignment with text prompts remains a challenge. This presentation introduces Initial Noise Optimization (InitNO), a method that refines initial noise to improve semantic accuracy in generated images. By evaluating and guiding the noise using cross-attention and self-attention scores, the approach effectively enhances image-prompt alignment, as demonstrated through rigorous experimentation.


πŸ“„ Paper: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/139
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in diffusion models, like Stable Diffusion, have shown impressive image generation capabilities, but ensuring precise alignment with text prompts remains a challenge. This presentation introduces Initial Noise Optimization (InitNO), a method that refines initial noise to improve semantic accuracy in generated images. By evaluating and guiding the noise using cross-attention and self-attention scores, the approach effectively enhances image-prompt alignment, as demonstrated through rigorous experimentation.


πŸ“„ Paper: InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization

Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/139

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless β€œ$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

telegram from sa


Telegram RIML Lab
FROM USA