Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/157
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/157

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. β€œWhile doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

telegram from sa


Telegram RIML Lab
FROM USA