Telegram Group & Telegram Channel
🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7713
Create:
Last Update:

🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel

BY Machinelearning







Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7713

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Machinelearning from sg


Telegram Machinelearning
FROM USA