Telegram Group & Telegram Channel
📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7739
Create:
Last Update:

📌Небенчмарковый анализ математических рассуждений o3-mini.

Epoch AI провели исследование, чтобы копнуть способность o3-mini в математическом ризонинге глубже, чем это происходит в популярных тестах и бенчмарках.

Они дали 14 математикам разобрать, как именно o3-mini-high решает сложные задачи из FrontierMath. Цель - понять ее сильные и слабые стороны в реальном математическом мышлении, а не просто фиксировать правильные ответы.

Так как внутренняя структура самой модели OpenAI не раскрывает, авторы сосредоточились на анализе ее рассуждений.

По 29-и "траекториям рассуждений" стало видно: модель не просто перебирает формулы, она действует как "индуктивный решатель на ощущениях" (по выражению одного математика).

Модель проявляет любопытство: пробует разные подходы, ставит "бюджетные эксперименты", чтобы прощупать задачу. Иногда даже пишет код для расчетов, избегая излишней абстракции.

Но стиль ее рассуждений часто неформальный, "черновой". Рассуждения излагаются приблизительно, без строгой формулировки, с пропусками сложных моментов – совсем не как это принято в математической среде.

Почему так? Возможно, строгие доказательства просто реже встречались в ее обучающих данных.

Главные проблемы модели – это обратная сторона ее же достоинств. Да, она эрудирована как никто (знает кучу теорем из разных областей – в 66% случаев она адресно применяла нужные знания, даже если подход был замаскирован).

Но ей не хватает строгости и глубины. Она часто "читерит": делает верную догадку интуитивно и тут же применяет ее для решения, даже не пытаясь ее подтвердить доказательствами.

Порой ей не хватает буквально одного шага до верного ответа. Но главное – математики критикуют ее за слабую креативность. Как заметил один эксперт, модель похожа на аспиранта, который может блеснуть начитанностью, назвать кучу теорем и авторов, но не способен глубоко переосмыслить материал или придумать что-то новое.

Набор идей модели ограничен, и если они не срабатывают – прогресса нет. Плюс ко всему, в 75% рассуждений нашли галлюцинации: модель путает термины, формулы, и зачастую выдумывает несуществующие URL для поиска недостающей информации.

Модель, по заверением OpenAI, обучали на огромном массиве данных математической литературы. Это объясняет ее феноменальную эрудицию. Но смогут ли такие модели, как o3-mini-high, преодолеть свои слабости в будущем?

Или же системы, обученные на синтетических данных (AlphaProof), пойдут другим путем, предлагая в инфернесе рассуждения, мало похожие на человеческое математическое мышление?

А пока что вывод: o3-mini-high – это мощный, но своеобразный инструмент. Знаток с интуицией, но без дисциплины профессора.

🔜 Читать статью полностью

@ai_machinelearning_big_data

#AI #ML #EpochAI

BY Machinelearning








Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7739

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Machinelearning from sg


Telegram Machinelearning
FROM USA