Telegram Group & Telegram Channel
Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?



tg-me.com/metaprogramming/406
Create:
Last Update:

Одиннадцать вопросов ИИ (для изучения математики и всего прочего)

Меня часто спрашивают...

Говорят, в эпоху модерна важно было наизусть знать основные факты, в эпоху постмодерна – где их найти. А в эпоху больших лингвистических моделей – как наиболее эффективно извлекать информацию по ходу диалогов на естественном языке.

В связи с этим решил описать свою "познавательную стратегию", направленную на ускорение обучения с применением LLM-ок. Применяю в основном в изучении математики, примеры соответствующие.

Общий план знакомства с новой концепцией такой:

1. Основные определения и алгоритмы
2. Связь с другими предметными областями через общие математические объекты
3. Допущения, нюансы, пресуппозиции
4. Перепроверка

Вопросы, которые задаю LLM-ке на каждом шаге соответственно, приведены далее. Стоит иметь в виду, что по-русски все современные LLM дают ответы значительно более низкого качества, перевод дан для удобства.

Основные определения и алгоритмы

1. Что такое X / What is X?

Пример: что такое сигмоида?

Вариации:
– Я всё ещё не понимаю X / I still don't understand X.
– О чем здесь речь / What's described here?

2. Напиши формулу для X / Write formula for X.

Пример: напиши формулу сигмоиды.

И наоборот:
– Объясни по-русски / Explain in plain English.

3. Как X делается по шагам / How X is performed, step-by-step?

Пример: как делается градиентный спуск, по шагам?

Связь с другими областями

4. Как связаны X и Y / How X implies Y?

Пример: как связаны MLE и лосс-функция логистической регрессии?

5. Объясни X, не упоминая Y / Explain X without referring to Y.

Пример: объясни логистическую регрессию, не упоминая GLM.

6. Объясни X с точки зрения Y / Explain X from the perspective of Y.

Пример: объясни MLE с точки зрения статистики.

7. X это то же, что Y / Is X the same as Y?

Пример: эквивариантность (equivariance) это то же, что естественное преобразование (natural transformation)?

(Прим.: один из вопросов, показывающих кардинальное превосходство LLM-ок над поисковыми системами в данной области. Выдачу гугла надо фильтровать и разбирать, LLM-ка сразу даёт резюме.)

Допущения, нюансы, пресуппозиции

8. Почему должно быть X / Why must be X?

Пример: почему в логистической регрессии log-odds должны линейно зависеть от признаков?

9. Что обычно упускают, рассказывая об X / What is usually omitted, when they speak of X?

Пример: что обычно упускают, рассказывая о логистической регрессии?

10. Какие базовые предпосылки X / What are basic assumptions of X?

Пример: какие базовые предпосылки логистической регрессии?

Перепроверка

11. Является ли этот конспект/решение корректным / Is this cheatsheet/solution correct?

BY Metaprogramming


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/metaprogramming/406

View MORE
Open in Telegram


Metaprogramming Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Metaprogramming from sg


Telegram Metaprogramming
FROM USA