Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

🌟 This Week's Presentation:

📌 Title:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

🎙️ Presenter: Amir Kasaei

🧠 Abstract:
This work presents an in-depth analysis of the causal structure in the text encoder of text-to-image (T2I) diffusion models, highlighting its role in introducing information bias and loss. While prior research has mainly addressed these issues during the denoising stage, this study focuses on the underexplored contribution of text embeddings—particularly in multi-object generation scenarios. The authors investigate how text embeddings influence the final image output and why models often favor the first-mentioned object, leading to imbalanced representations. To mitigate this, they propose a training-free text embedding balance optimization method that improves information balance in Stable Diffusion by 125.42%. Additionally, a new automatic evaluation metric is introduced, offering a more accurate assessment of information loss with an 81% concordance rate with human evaluations. This metric better captures object presence and accuracy compared to existing measures like CLIP-based text-image similarity scores.

📄 Paper:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/211
Create:
Last Update:

💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

🌟 This Week's Presentation:

📌 Title:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

🎙️ Presenter: Amir Kasaei

🧠 Abstract:
This work presents an in-depth analysis of the causal structure in the text encoder of text-to-image (T2I) diffusion models, highlighting its role in introducing information bias and loss. While prior research has mainly addressed these issues during the denoising stage, this study focuses on the underexplored contribution of text embeddings—particularly in multi-object generation scenarios. The authors investigate how text embeddings influence the final image output and why models often favor the first-mentioned object, leading to imbalanced representations. To mitigate this, they propose a training-free text embedding balance optimization method that improves information balance in Stable Diffusion by 125.42%. Additionally, a new automatic evaluation metric is introduced, offering a more accurate assessment of information loss with an 81% concordance rate with human evaluations. This metric better captures object presence and accuracy compared to existing measures like CLIP-based text-image similarity scores.

📄 Paper:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/211

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

telegram from sg


Telegram RIML Lab
FROM USA