Telegram Group & Telegram Channel
🖥Задача: "Динамическое кэширование с ограничением памяти и частотой запросов"

🔖 Условие:

Реализуйте класс SmartCache, который работает следующим образом:

- Метод put(key: str, value: Any):
- Сохраняет значение по ключу.
- Если суммарный объем памяти, занимаемый всеми элементами, превышает лимит (например, 10 MB), автоматически удаляются наименее "ценные" элементы.

- Метод get(key: str) -> Any:
- Возвращает значение по ключу.
- Увеличивает счётчик использования элемента.
- Если элемент отсутствует — возвращает None.

Что значит "ценность" элемента:
- Ценность = количество обращений (`hit count`) к элементу.
- При очистке кэша сначала удаляются элементы с наименьшим количеством обращений.

Ограничения:
- Класс должен корректно считать объём памяти, занимаемый элементами.
- Нужно учитывать, что элементы могут быть сложными структурами (`dict`, list, вложенные объекты).
- Решение должно быть эффективным: операции должны быть быстрыми даже при большом количестве элементов.

---

▪️ Подсказки:

- Для оценки размера объектов можно использовать модуль sys.getsizeof, но для сложных вложенных структур нужен рекурсивный подсчет.
- Для хранения частоты обращений стоит использовать дополнительную структуру данных (`collections.Counter` или `dict`).
- При очистке лучше сначала группировать элементы по "ценности", а затем удалять самые "дешевые".

---

▪️ Что оценивается:

- Умение работать с ограничениями по памяти.
- Аккуратная обработка ссылок и размеров объектов.
- Эффективность очистки кэша.
- Чистота и читаемость кода.

---

▪️ Разбор возможного решения:

Идея архитектуры:

- Храним:
- storage: словарь {key: value}.
- hits: счётчик {key: hit_count}.
- size: общий размер всех объектов.
- При put():
- Добавляем элемент.
- Пересчитываем суммарный размер.
- Если размер превышает лимит:
- Удаляем наименее популярные элементы до тех пор, пока не уложимся в лимит.
- При get():
- Увеличиваем hit_count элемента.
- Возвращаем значение или None.

Оценка размера объектов:

- Простого sys.getsizeof недостаточно для коллекций.
- Нужна функция, рекурсивно подсчитывающая размер всех вложенных объектов.

Мини-пример функции подсчета размера:


import sys

def deep_getsizeof(obj, seen=None):
"""Рекурсивно считает память объекта и его вложенных объектов"""
size = sys.getsizeof(obj)
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0
seen.add(obj_id)

if isinstance(obj, dict):
size += sum([deep_getsizeof(v, seen) + deep_getsizeof(k, seen) for k, v in obj.items()])
elif isinstance(obj, (list, tuple, set, frozenset)):
size += sum(deep_getsizeof(i, seen) for i in obj)
return size


Мини-пример интерфейса `SmartCache`:


class SmartCache:
def __init__(self, max_size_bytes):
self.max_size = max_size_bytes
self.storage = {}
self.hits = {}
self.total_size = 0

def put(self, key, value):
# добавить логику добавления и очистки при переполнении
pass

def get(self, key):
# увеличить hit_count и вернуть значение
pass


🔖 Дополнительные вопросы:

- Как ускорить очистку кэша без полного перебора всех элементов?
- Как сделать потокобезопасную версию кэша?
- Как адаптировать SmartCache для распределённой архитектуры (кэш между несколькими машинами)?

@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/python_job_interview/1089
Create:
Last Update:

🖥Задача: "Динамическое кэширование с ограничением памяти и частотой запросов"

🔖 Условие:

Реализуйте класс SmartCache, который работает следующим образом:

- Метод put(key: str, value: Any):
- Сохраняет значение по ключу.
- Если суммарный объем памяти, занимаемый всеми элементами, превышает лимит (например, 10 MB), автоматически удаляются наименее "ценные" элементы.

- Метод get(key: str) -> Any:
- Возвращает значение по ключу.
- Увеличивает счётчик использования элемента.
- Если элемент отсутствует — возвращает None.

Что значит "ценность" элемента:
- Ценность = количество обращений (`hit count`) к элементу.
- При очистке кэша сначала удаляются элементы с наименьшим количеством обращений.

Ограничения:
- Класс должен корректно считать объём памяти, занимаемый элементами.
- Нужно учитывать, что элементы могут быть сложными структурами (`dict`, list, вложенные объекты).
- Решение должно быть эффективным: операции должны быть быстрыми даже при большом количестве элементов.

---

▪️ Подсказки:

- Для оценки размера объектов можно использовать модуль sys.getsizeof, но для сложных вложенных структур нужен рекурсивный подсчет.
- Для хранения частоты обращений стоит использовать дополнительную структуру данных (`collections.Counter` или `dict`).
- При очистке лучше сначала группировать элементы по "ценности", а затем удалять самые "дешевые".

---

▪️ Что оценивается:

- Умение работать с ограничениями по памяти.
- Аккуратная обработка ссылок и размеров объектов.
- Эффективность очистки кэша.
- Чистота и читаемость кода.

---

▪️ Разбор возможного решения:

Идея архитектуры:

- Храним:
- storage: словарь {key: value}.
- hits: счётчик {key: hit_count}.
- size: общий размер всех объектов.
- При put():
- Добавляем элемент.
- Пересчитываем суммарный размер.
- Если размер превышает лимит:
- Удаляем наименее популярные элементы до тех пор, пока не уложимся в лимит.
- При get():
- Увеличиваем hit_count элемента.
- Возвращаем значение или None.

Оценка размера объектов:

- Простого sys.getsizeof недостаточно для коллекций.
- Нужна функция, рекурсивно подсчитывающая размер всех вложенных объектов.

Мини-пример функции подсчета размера:


import sys

def deep_getsizeof(obj, seen=None):
"""Рекурсивно считает память объекта и его вложенных объектов"""
size = sys.getsizeof(obj)
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0
seen.add(obj_id)

if isinstance(obj, dict):
size += sum([deep_getsizeof(v, seen) + deep_getsizeof(k, seen) for k, v in obj.items()])
elif isinstance(obj, (list, tuple, set, frozenset)):
size += sum(deep_getsizeof(i, seen) for i in obj)
return size


Мини-пример интерфейса `SmartCache`:


class SmartCache:
def __init__(self, max_size_bytes):
self.max_size = max_size_bytes
self.storage = {}
self.hits = {}
self.total_size = 0

def put(self, key, value):
# добавить логику добавления и очистки при переполнении
pass

def get(self, key):
# увеличить hit_count и вернуть значение
pass


🔖 Дополнительные вопросы:

- Как ускорить очистку кэша без полного перебора всех элементов?
- Как сделать потокобезопасную версию кэша?
- Как адаптировать SmartCache для распределённой архитектуры (кэш между несколькими машинами)?

@python_job_interview

BY Python вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_job_interview/1089

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

telegram from us


Telegram Python вопросы с собеседований
FROM USA