Telegram Group & Telegram Channel
Рост производительности машинного обучения с Rust

В этой статье я хочу поделиться своим опытом создания небольшой платформы для машинного обучения (ML) с нуля, используя язык программирования Rust.

Для моего эксперимента у меня были следующие цели:

1 - Я хотел выяснить, приведет ли переход с Python + PyTorch на Rust + LibTorch (библиотеку C++, используемую в PyTorch) к ощутимому увеличению скорости, особенно в процессе обучения модели. Как мы знаем, модели машинного обучения становятся все больше и требуют все больше вычислительных ресурсов для обучения, что иногда недоступно для обычного человека. Один из способов уменьшить требования к аппаратному обеспечению — найти способ сделать алгоритмы более вычислительно эффективными. Зная, что в PyTorch Python является лишь верхним слоем над LibTorch, мой главный вопрос заключался в том, стоит ли заменять этот верхний слой Python на Rust. План заключался в том, чтобы использовать библиотеку Tch-rs Rust для работы с тензорами и функцией автоградента из DLL LibTorch, которая будет выступать в качестве "калькулятора градиентов", а затем разработать остальную часть с нуля на Rust.

2 - Я хотел, чтобы код был достаточно простым для четкого понимания всех выполняемых операций с линейной алгеброй и позволял легко расширять его при необходимости.

3 - Насколько это возможно, моя платформа должна позволять мне определять модели машинного обучения по структуре, аналогичной стандартной Python/PyTorch.


https://betterprogramming.pub/boosting-machine-learning-performance-with-rust-aab1f3ae1424

👉 @rust_lib



tg-me.com/rust_lib/161
Create:
Last Update:

Рост производительности машинного обучения с Rust

В этой статье я хочу поделиться своим опытом создания небольшой платформы для машинного обучения (ML) с нуля, используя язык программирования Rust.

Для моего эксперимента у меня были следующие цели:

1 - Я хотел выяснить, приведет ли переход с Python + PyTorch на Rust + LibTorch (библиотеку C++, используемую в PyTorch) к ощутимому увеличению скорости, особенно в процессе обучения модели. Как мы знаем, модели машинного обучения становятся все больше и требуют все больше вычислительных ресурсов для обучения, что иногда недоступно для обычного человека. Один из способов уменьшить требования к аппаратному обеспечению — найти способ сделать алгоритмы более вычислительно эффективными. Зная, что в PyTorch Python является лишь верхним слоем над LibTorch, мой главный вопрос заключался в том, стоит ли заменять этот верхний слой Python на Rust. План заключался в том, чтобы использовать библиотеку Tch-rs Rust для работы с тензорами и функцией автоградента из DLL LibTorch, которая будет выступать в качестве "калькулятора градиентов", а затем разработать остальную часть с нуля на Rust.

2 - Я хотел, чтобы код был достаточно простым для четкого понимания всех выполняемых операций с линейной алгеброй и позволял легко расширять его при необходимости.

3 - Насколько это возможно, моя платформа должна позволять мне определять модели машинного обучения по структуре, аналогичной стандартной Python/PyTorch.


https://betterprogramming.pub/boosting-machine-learning-performance-with-rust-aab1f3ae1424

👉 @rust_lib

BY Rust




Share with your friend now:
tg-me.com/rust_lib/161

View MORE
Open in Telegram


Rust Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Rust from tr


Telegram Rust
FROM USA