Telegram Group & Telegram Channel
🧠 LangChainGo и MongoDB: создание RAG-приложений на Go

🚀 Основная идея

MongoDB интегрировалась с LangChainGo — портом популярного фреймворка LangChain для языка Go. Это позволяет разработчикам на Go создавать приложения с поддержкой больших языковых моделей (LLM), используя возможности MongoDB для векторного поиска и хранения данных.

🔧 Что такое LangChainGo?

LangChainGo — это сообщественно-разрабатываемый порт фреймворка LangChain для языка Go.
• Позволяет интегрировать LLM в Go-приложения, используя такие сервисы, как OpenAI, Ollama, Mistral и другие.
• Поддерживает различные хранилища векторов, включая MongoDB.

🗄 Роль MongoDB как операционной и векторной базы данных

MongoDB Atlas предоставляет встроенные возможности векторного поиска, упрощая разработку AI-приложений.
• Объединяет семантический поиск с фильтрами по метаданным, графовыми запросами, агрегациями и геопространственным поиском.
• Распределённая архитектура обеспечивает масштабируемость и изоляцию нагрузок.
• Обеспечивает корпоративный уровень безопасности и доступности.

🤖 MongoDB, Go и AI/ML

• Go становится всё более популярным в AI/ML благодаря своей простоте, масштабируемости и безопасности во время выполнения.
• Интеграция MongoDB с LangChainGo позволяет разработчикам на Go создавать приложения с поддержкой RAG (Retrieval-Augmented Generation) и AI-агентов.
MongoDB Go Driver поддерживает векторный поиск и упрощает взаимодействие с MongoDB из Go-приложений.

🏁 Начало работы с MongoDB и LangChainGo

• MongoDB добавлена как хранилище векторов в версии LangChainGo v0.1.13 под названием mongovector.
• Пример использования: [mongovector-vectorstore-example](https://github.com/tmc/langchaingo/tree/main/examples/mongovector-vectorstore-example).
• Полезные руководства:
- [Начало работы с интеграцией LangChainGo](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [RAG с Atlas Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [Локальная реализация RAG с Atlas Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [Начало работы с Atlas Vector Search (Go)](https://www.mongodb.com/docs/atlas/atlas-vector-search/)

Эта интеграция открывает новые возможности для разработчиков на Go, позволяя эффективно использовать MongoDB для создания современных AI-приложений.

👉 Источник

@golang_google



tg-me.com/Golang_google/2900
Create:
Last Update:

🧠 LangChainGo и MongoDB: создание RAG-приложений на Go

🚀 Основная идея

MongoDB интегрировалась с LangChainGo — портом популярного фреймворка LangChain для языка Go. Это позволяет разработчикам на Go создавать приложения с поддержкой больших языковых моделей (LLM), используя возможности MongoDB для векторного поиска и хранения данных.

🔧 Что такое LangChainGo?

LangChainGo — это сообщественно-разрабатываемый порт фреймворка LangChain для языка Go.
• Позволяет интегрировать LLM в Go-приложения, используя такие сервисы, как OpenAI, Ollama, Mistral и другие.
• Поддерживает различные хранилища векторов, включая MongoDB.

🗄 Роль MongoDB как операционной и векторной базы данных

MongoDB Atlas предоставляет встроенные возможности векторного поиска, упрощая разработку AI-приложений.
• Объединяет семантический поиск с фильтрами по метаданным, графовыми запросами, агрегациями и геопространственным поиском.
• Распределённая архитектура обеспечивает масштабируемость и изоляцию нагрузок.
• Обеспечивает корпоративный уровень безопасности и доступности.

🤖 MongoDB, Go и AI/ML

• Go становится всё более популярным в AI/ML благодаря своей простоте, масштабируемости и безопасности во время выполнения.
• Интеграция MongoDB с LangChainGo позволяет разработчикам на Go создавать приложения с поддержкой RAG (Retrieval-Augmented Generation) и AI-агентов.
MongoDB Go Driver поддерживает векторный поиск и упрощает взаимодействие с MongoDB из Go-приложений.

🏁 Начало работы с MongoDB и LangChainGo

• MongoDB добавлена как хранилище векторов в версии LangChainGo v0.1.13 под названием mongovector.
• Пример использования: [mongovector-vectorstore-example](https://github.com/tmc/langchaingo/tree/main/examples/mongovector-vectorstore-example).
• Полезные руководства:
- [Начало работы с интеграцией LangChainGo](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [RAG с Atlas Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [Локальная реализация RAG с Atlas Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/langchain-go/)
- [Начало работы с Atlas Vector Search (Go)](https://www.mongodb.com/docs/atlas/atlas-vector-search/)

Эта интеграция открывает новые возможности для разработчиков на Go, позволяя эффективно использовать MongoDB для создания современных AI-приложений.

👉 Источник

@golang_google

BY Golang




Share with your friend now:
tg-me.com/Golang_google/2900

View MORE
Open in Telegram


Golang Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Golang from tw


Telegram Golang
FROM USA