Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1521
Create:
Last Update:

🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1521

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Machine learning Interview from tw


Telegram Machine learning Interview
FROM USA