Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/tensorflowblog/457
Create:
Last Update:

🌟SALSA: Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ адаптация Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска Armijo.

SALSA (Stable Armijo Line Search Adaptation) β€” ΠΌΠ΅Ρ‚ΠΎΠ΄, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Learning Rate (LR) Π²ΠΎ врСмя обучСния.
Основная концСпция ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСна Π²ΠΎΠΊΡ€ΡƒΠ³ выполнСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска для опрСдСлСния Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ LR для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ шага обучСния, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ, Salsa ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ поиск. Π’ Π½Π΅ΠΌ LR постСпСнно увСличиваСтся с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ шагом, Π° ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска постоянно пСрСоцСниваСтся.
Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Salsa Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ сглаТиваниС Π² процСсс Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ поиска ΠΈ устанавливаСт Π΄Π²Π° ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰ΠΈΡ… срСдних для скорости обучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΠΌΠΈΠ½ΠΈ-пакСтирования.

Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Salsa прСвосходит Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ: 50% сокращСниС final loss ΠΈ 1,25 average rank Π² языковых ΠΈ графичСских Π·Π°Π΄Π°Ρ‡Π°Ρ….
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ Salsa всСго Π½Π° 3% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ LR ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ, учитывая ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Salsa достаточно унивСрсалСн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ особСнно эффСктивСн ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ соврСмСнных Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΊ скорости обучСния.

β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ запуск:

# Clone repository:
git clone https://github.com/TheMody/No-learning-rates-needed-Introducing-SALSA-Stable-Armijo-Line-Search-Adaptation.git

# Create & activate env:
conda env create -f environment.yml
conda activate sls3

# Install dependencies:
pip install pytorch numpy transformers datasets tensorflow-datasets wandb

# NOTE: custom optimizer is in \salsa\SaLSA.py,comparison version are in \salsa\adam_sls.py:
from salsa.SaLSA import SaLSA
self.optimizer = SaLSA(model.parameters())

# NOTE: typical pytorch forward pass needs to be changed to:
def closure(backwards = False):
y_pred = model(x)
loss = criterion(y_pred, y)
if backwards: loss.backward()
return loss
optimizer.zero_grad()
loss = optimizer.step(closure = closure)



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ :  MIT License


🟑Arxiv
πŸŸ‘Π”Π°Ρ‚Π°ΡΠ΅Ρ‚ Cifar-10
🟑Youtube video
πŸ–₯Github [ Stars: 11 | Issues: 0 | Forks: 0]


@ai_machinelearning_big_data

#AI #LLM #ML #Train #SALSA

BY TensorFlow








Share with your friend now:
tg-me.com/tensorflowblog/457

View MORE
Open in Telegram


TensorFlow Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

TensorFlow from tw


Telegram TensorFlow
FROM USA