tg-me.com/hse_cs_opensource/88
Last Update:
digital-twin
В данном исследовании группа ученых из ВШЭ моделируют производительность систем хранения данных, используя вероятностный подход. Они рассматривают различные компоненты — кэш, SSD, HDD, — собирают показатели IOPS и задержки при разных конфигурациях и нагрузках, а затем обучают свои модели CatBoost и Normalizing Flow. Авторы демонстрируют, что этот подход не только предсказывает средние значения, но и охватывает всё распределение метрик, что особенно важно для оценки неопределенности и сценариев «цифрового двойника». Исследователи также проверяют надежность предсказаний с помощью известных зависимостей и отмечают, что полученные результаты тесно соответствуют реальным измерениям, превосходя простые методы вроде kNN. Данная методика может быть применена для анализа производительности, оптимизации настроек и предиктивного обслуживания систем хранения данных. Вклад авторов не ограничивается выбранным подходом: они также предоставляют открытый доступ к набору данных, использованному в исследовании. Найти его можно в репозитории с кодом. Работа может быть полезна ML-инженерам и DS-специалистам.
статья | код
BY Открытый код ФКН ВШЭ

Share with your friend now:
tg-me.com/hse_cs_opensource/88