Telegram Group & Telegram Channel
⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!

Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.

Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»

Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»

Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.

🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!

🔥 Спасибо всем, кто был с нами и участвовал!

💘 Как же это было?

Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉



tg-me.com/py_interview_lib/724
Create:
Last Update:

⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!

Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.

Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»

Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»

Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.

🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!

🔥 Спасибо всем, кто был с нами и участвовал!

💘 Как же это было?

Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉

BY Библиотека собеса по Python | вопросы с собеседований




Share with your friend now:
tg-me.com/py_interview_lib/724

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

telegram from tw


Telegram Библиотека собеса по Python | вопросы с собеседований
FROM USA