Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/DevOPSitsec/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
DevOps | Telegram Webview: DevOPSitsec/1354 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/DevOPSitsec/1354
Create:
Last Update:

✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml

BY DevOps




Share with your friend now:
tg-me.com/DevOPSitsec/1354

View MORE
Open in Telegram


DevOps Telegram | DID YOU KNOW?

Date: |

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

DevOps from ua


Telegram DevOps
FROM USA