Telegram Group & Telegram Channel
✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7034
Create:
Last Update:

✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml

BY Machinelearning




Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7034

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Machinelearning from ua


Telegram Machinelearning
FROM USA