Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/github_code/336
Create:
Last Update:

🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP

BY Github





Share with your friend now:
tg-me.com/github_code/336

View MORE
Open in Telegram


Github Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Github from us


Telegram Github
FROM USA