В данном исследовании группа ученых из ВШЭ моделируют производительность систем хранения данных, используя вероятностный подход. Они рассматривают различные компоненты — кэш, SSD, HDD, — собирают показатели IOPS и задержки при разных конфигурациях и нагрузках, а затем обучают свои модели CatBoost и Normalizing Flow. Авторы демонстрируют, что этот подход не только предсказывает средние значения, но и охватывает всё распределение метрик, что особенно важно для оценки неопределенности и сценариев «цифрового двойника». Исследователи также проверяют надежность предсказаний с помощью известных зависимостей и отмечают, что полученные результаты тесно соответствуют реальным измерениям, превосходя простые методы вроде kNN. Данная методика может быть применена для анализа производительности, оптимизации настроек и предиктивного обслуживания систем хранения данных. Вклад авторов не ограничивается выбранным подходом: они также предоставляют открытый доступ к набору данных, использованному в исследовании. Найти его можно в репозитории с кодом. Работа может быть полезна ML-инженерам и DS-специалистам.
В данном исследовании группа ученых из ВШЭ моделируют производительность систем хранения данных, используя вероятностный подход. Они рассматривают различные компоненты — кэш, SSD, HDD, — собирают показатели IOPS и задержки при разных конфигурациях и нагрузках, а затем обучают свои модели CatBoost и Normalizing Flow. Авторы демонстрируют, что этот подход не только предсказывает средние значения, но и охватывает всё распределение метрик, что особенно важно для оценки неопределенности и сценариев «цифрового двойника». Исследователи также проверяют надежность предсказаний с помощью известных зависимостей и отмечают, что полученные результаты тесно соответствуют реальным измерениям, превосходя простые методы вроде kNN. Данная методика может быть применена для анализа производительности, оптимизации настроек и предиктивного обслуживания систем хранения данных. Вклад авторов не ограничивается выбранным подходом: они также предоставляют открытый доступ к набору данных, использованному в исследовании. Найти его можно в репозитории с кодом. Работа может быть полезна ML-инженерам и DS-специалистам.
“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.