Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1523
Create:
Last Update:

🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1523

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Machine learning Interview from vn


Telegram Machine learning Interview
FROM USA