Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Correcting Diffusion Generation through Resampling


🔸 Presenter: Ali Aghayari

🌀 Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


📄 Papers: Correcting Diffusion Generation through Resampling


Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/157
Create:
Last Update:

💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Correcting Diffusion Generation through Resampling


🔸 Presenter: Ali Aghayari

🌀 Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


📄 Papers: Correcting Diffusion Generation through Resampling


Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/157

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

telegram from vn


Telegram RIML Lab
FROM USA