Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/github_code/335
Create:
Last Update:

🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP

BY Github





Share with your friend now:
tg-me.com/github_code/335

View MORE
Open in Telegram


Github Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Github from ye


Telegram Github
FROM USA