Warning: file_put_contents(aCache/aDaily/post/ai_machinelearning_big_data/-5972-5973-5974-5975-5972-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Machinelearning | Telegram Webview: ai_machinelearning_big_data/5974 -
Telegram Group & Telegram Channel
🌟 Mochi 1: открытая text-to-video модель генерации видео.

Mochi 1 - модель от компании Genmo для генерации видео на новой архитектуре Asymmetric Diffusion Transformer (AsymmDiT).

Mochi 1 была обучена с нуля и получила 10 млрд. параметров. Это самая большая генеративная модель видео, когда-либо выпущенная в открытый доступ.

Модель способна генерировать видео с разрешением 480p длительностью до 5,4 секунд со скоростью 30 кадров в секунду. AsymmDiT обрабатывает текстовые запросы используя одну языковую модель T5-XXL.

Вместе с Mochi 1 Genmo выпустила в открытый доступ свой видеокодер AsymmVAE, который сжимает видео до 128-кратного размера, с пространственным 8x8 и временным 6x сжатием до 12-канального латентного пространства.

Genmo планирует выпустить улучшенную вервию - Mochi 1 HD до конца года, которая будет поддерживать разрешение 720p.


⚠️ Для работы модели требуется не менее 4 GPU H100.

⚠️ В некоторых случаях при экстремальном движении могут возникать незначительные деформации и искажения.

⚠️ Mochi оптимизирована для фотореалистичных стилей, поэтому не очень хорошо работает с анимированным контентом.

▶️ Локальная установка и инференс c Gradio UI или в CLI:

# Clone repo
git clone https://github.com/genmoai/models
cd models

# Install using uv
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .

# Inference with Gradio UI
python3 -m mochi_preview.gradio_ui --model_dir "<path_to_model_directory>"

# Inference with CLI
python3 -m mochi_preview.infer --prompt "%prompt%" --seed 1710977262 --cfg_scale 4.5 --model_dir "<path_to_model_directory>"


📌Лицензирование: Apache 2.0 license.


🟡Страница проекта
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Text2Video #AsymmDiT #Mochi1
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/5974
Create:
Last Update:

🌟 Mochi 1: открытая text-to-video модель генерации видео.

Mochi 1 - модель от компании Genmo для генерации видео на новой архитектуре Asymmetric Diffusion Transformer (AsymmDiT).

Mochi 1 была обучена с нуля и получила 10 млрд. параметров. Это самая большая генеративная модель видео, когда-либо выпущенная в открытый доступ.

Модель способна генерировать видео с разрешением 480p длительностью до 5,4 секунд со скоростью 30 кадров в секунду. AsymmDiT обрабатывает текстовые запросы используя одну языковую модель T5-XXL.

Вместе с Mochi 1 Genmo выпустила в открытый доступ свой видеокодер AsymmVAE, который сжимает видео до 128-кратного размера, с пространственным 8x8 и временным 6x сжатием до 12-канального латентного пространства.

Genmo планирует выпустить улучшенную вервию - Mochi 1 HD до конца года, которая будет поддерживать разрешение 720p.


⚠️ Для работы модели требуется не менее 4 GPU H100.

⚠️ В некоторых случаях при экстремальном движении могут возникать незначительные деформации и искажения.

⚠️ Mochi оптимизирована для фотореалистичных стилей, поэтому не очень хорошо работает с анимированным контентом.

▶️ Локальная установка и инференс c Gradio UI или в CLI:

# Clone repo
git clone https://github.com/genmoai/models
cd models

# Install using uv
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .

# Inference with Gradio UI
python3 -m mochi_preview.gradio_ui --model_dir "<path_to_model_directory>"

# Inference with CLI
python3 -m mochi_preview.infer --prompt "%prompt%" --seed 1710977262 --cfg_scale 4.5 --model_dir "<path_to_model_directory>"


📌Лицензирование: Apache 2.0 license.


🟡Страница проекта
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Text2Video #AsymmDiT #Mochi1

BY Machinelearning






Share with your friend now:
tg-me.com/ai_machinelearning_big_data/5974

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Machinelearning from ye


Telegram Machinelearning
FROM USA