Telegram Group & Telegram Channel
tencdm

В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.

статья | код



tg-me.com/hse_cs_opensource/102
Create:
Last Update:

tencdm

В репозитории содержится код для воспроизведения экспериментов по генерации текста методом TEncDM (Text Encoding Diffusion Model) — диффузионной модели, работающей в пространстве выходных представлений предобученной языковой модели, а не в embedding-пространстве, как в большинстве предыдущих работ. Авторы демонстрируют, что использование таких представлений, содержащих контекстную информацию, существенно упрощает задачу денойзинга и повышает качество генерации. Ключевая особенность TEncDM — декодер, специально обученный восстанавливать текст из зашумленных латентных представлений, что позволяет компенсировать ошибки на этапах диффузии. Также авторы подробно исследуют влияние self-conditioning и scheduler’ов шума на качество модели. Предложен новый scheduler (tan-d), равномерно распределяющий сложность по всем шагам денойзинга. В экспериментах показано, что при использовании таких компонентов модель превосходит существующие SOTA подходы (DiffuSeq, AR-Diffusion и др.) на задачах перефразирования, суммаризации и упрощения текста (QQP, XSum, Wiki-Auto). Репозиторий предоставляет полный пайплайн: тренировка диффузионной модели в пространстве энкодингов, обучение декодера с corrupt-стратегией, настройка self-conditioning и различных схем шумов. Код открытый, реализован на PyTorch и включает запуск на множестве датасетов (ROCStories, Wikipedia и др.), поддерживая генерацию в условиях как с условием (conditional), так и без него. Работа может быть полезна исследователям в области генерации текста, особенно тем, кто занимается развитием диффузионных моделей, а также разработчикам, ищущим более интерпретируемые и мощные альтернативы автокорреляционным языковым моделям.

статья | код

BY Открытый код ФКН ВШЭ




Share with your friend now:
tg-me.com/hse_cs_opensource/102

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

telegram from ye


Telegram Открытый код ФКН ВШЭ
FROM USA