В репозитории содержится код для воспроизведения результатов работы по дополнению пропущенных связей в knowledge graph с использованием новой модели факторизации тензоров со смешанной геометрией (MIG-TF). Авторы предлагают подход, комбинирующий евклидову геометрию, через Tucker-разложение, и гиперболическую геометрию, через введённый гиперболический тернарный член взаимодействия TPTF. Такая конструкция позволяет более точно моделировать структурные особенности реальных knowledge graph, где распределение связей зачастую лишь частично следует иерархической структуре. В экспериментах показано, что предложенная модель превосходит по качеству как чисто евклидовые, так и чисто гиперболические модели, достигая state-of-the-art результатов на стандартных датасетах FB15k-237, YAGO3-10 и WN18RR при меньшем числе параметров. Особенно заметно улучшение на графах с нарушенной иерархией (например, FB15k-237). Кроме того, авторы изучают влияние кривизны гиперболической компоненты, вводят регуляризацию через ортогонализацию и анализируют робастность модели к зашумлённости обучающих данных. Работа может быть полезна исследователям в области factorization-based подходов к knowledge graph completion, а также специалистам, занимающимся построением компактных и эффективных моделей для анализа графовых данных со смешанной структурой.
В репозитории содержится код для воспроизведения результатов работы по дополнению пропущенных связей в knowledge graph с использованием новой модели факторизации тензоров со смешанной геометрией (MIG-TF). Авторы предлагают подход, комбинирующий евклидову геометрию, через Tucker-разложение, и гиперболическую геометрию, через введённый гиперболический тернарный член взаимодействия TPTF. Такая конструкция позволяет более точно моделировать структурные особенности реальных knowledge graph, где распределение связей зачастую лишь частично следует иерархической структуре. В экспериментах показано, что предложенная модель превосходит по качеству как чисто евклидовые, так и чисто гиперболические модели, достигая state-of-the-art результатов на стандартных датасетах FB15k-237, YAGO3-10 и WN18RR при меньшем числе параметров. Особенно заметно улучшение на графах с нарушенной иерархией (например, FB15k-237). Кроме того, авторы изучают влияние кривизны гиперболической компоненты, вводят регуляризацию через ортогонализацию и анализируют робастность модели к зашумлённости обучающих данных. Работа может быть полезна исследователям в области factorization-based подходов к knowledge graph completion, а также специалистам, занимающимся построением компактных и эффективных моделей для анализа графовых данных со смешанной структурой.
Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”
Why Telegram?
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.