Telegram Group & Telegram Channel
Демка продукта с ассистентом удалась! Клиент был приятно удивлен качеством ответов по базе знаний. Они хотят запустить первых пользователей как можно быстрее 🎉.

Вот вопросы, к которым готовили заранее ответы (и они все пригодились) 🤔

Q: Почему задержки при поиске в 10-20 секунд?
Потому, что при происке нам нужно обработать где-то 10-15 потенциально релевантных документов в контексте вопроса. Даже с распараллеливанием, мы упираемся в задержки и лимиты OpenAI API.

Q: Можно ли это как-то ускорить?
Да, у нас есть несколько вариантов. Если получите выделенный Azure OpenAI deployment, тогда можно использовать его для скорости. Плюс наши бенчмарки отслеживают прогресс в области локальных LLM. Как только какая-нибудь локальная LLM наберет достаточно очков в категориях Docs и Reason для вашего языка, мы сможем все запустить локально на GPU. Embeddings уже работают локальные.

Q: Уходят ли куда-то наши данные?
Да, контекст вопроса и найденные обрезки документов уходят на Azure OpenAI в европейском регионе. Данные не используются для обучения, а доступ к ним ограничен, прямо как с Azure Cognitive services, которые вы уже используете.

Когда пересядем на локальные модели, данные будут полностью оставаться в вашем дата-центре.

Q: Есть ли какие-то ограничения по размеру поисковой базы?
Технических ограничений нет. Наш ассистент для автоматического исправления ошибок в каталогах вообще работает без проблем со всем интернетом :)


⭐️Особенности технической реализации
Нулевая версия работала на LangChain/LLamaIndex c использованием GPT-4. Это стандартный способ начать работу над продуктом: “сначала докажи, что оно может работать на лучшей модели, прежде чем вбухивать недели в модель послабее”.

Думали, что этого и хватит, но вылезли грабли:
(1) база знаний - полная каша
(2) язык - немецкий, он не родной для LLM.
(3) предметная область очень специфичная и запутанная

Простые игры с индексами, размерами chunks и прочими параметрами особо не помогали. Айгиз перебенчмаркал индексы LangChain & LLamaIndex в разных комбинациях и конфигурациях.

🔧 SBERT для embeddings

В процессе быстро уперлись в производительность OpenAI Ada embeddings и пересели на локальные sentence transformers (SBERT). С ними хорошо, и это теперь дефолтовый вариант для всех продуктов.

🔬Тестовый dataset - наше все!

К слову, разные варианты embeddings моделей и конфигураций - тоже бенчмаркали. Во всех бенчмарках помогал тестовый dataset: попросили носителя языка пройтись по базе знаний и составить список простых вопросов, которые можно использовать для оценки качества системы. Благодаря ему все изменения были целенаправленными и итеративными.

🚧 LangChain/LLamaIndex заменили

В процессе итеративных улучшений оказалось проще заменить LangChain/LLamaIndex, на нативные вызовы OpenAI completion. Из NLP библиотек только остались numpy, sentence_transformers, openai. Причем основного кода - 400 строчек, считая начинку промптов 😃

Более быстрый OpenAI - это Azure OpenAI. И меньше вызовов ChatGPT

В процессе скорости OpenAI не совсем радовала. Особенно, она проседает, когда просыпается США. Для решения проблем:
(1) добавление asynсio и распареллеливание запросов
(2) переключение на Azure OpenAI, где скорости лучше
(3) добавление document re-rank, который может быстро отфильтровывать явно “мусорные” документы. Тем самым остается меньше работы на ChatGPT.

💪 ChatGPT-3.5 Turbo - достаточно хорош

Для работы системы используется ChatGPT-3.5, а не ChatGPT-4! В итоговой системе его “грузоподъемности” хватает для прохождения тестовых бенчмарков с достаточно хорошим качеством.

Это восхитительно влияет на бюджет, скорость и стабильность работы.

---
Окончание - ниже, ибо этот пост @llm_under_hood не лезет в лимиты Telegram 🤗
🔥71👍1



tg-me.com/llm_under_hood/48
Create:
Last Update:

Демка продукта с ассистентом удалась! Клиент был приятно удивлен качеством ответов по базе знаний. Они хотят запустить первых пользователей как можно быстрее 🎉.

Вот вопросы, к которым готовили заранее ответы (и они все пригодились) 🤔

Q: Почему задержки при поиске в 10-20 секунд?
Потому, что при происке нам нужно обработать где-то 10-15 потенциально релевантных документов в контексте вопроса. Даже с распараллеливанием, мы упираемся в задержки и лимиты OpenAI API.

Q: Можно ли это как-то ускорить?
Да, у нас есть несколько вариантов. Если получите выделенный Azure OpenAI deployment, тогда можно использовать его для скорости. Плюс наши бенчмарки отслеживают прогресс в области локальных LLM. Как только какая-нибудь локальная LLM наберет достаточно очков в категориях Docs и Reason для вашего языка, мы сможем все запустить локально на GPU. Embeddings уже работают локальные.

Q: Уходят ли куда-то наши данные?
Да, контекст вопроса и найденные обрезки документов уходят на Azure OpenAI в европейском регионе. Данные не используются для обучения, а доступ к ним ограничен, прямо как с Azure Cognitive services, которые вы уже используете.

Когда пересядем на локальные модели, данные будут полностью оставаться в вашем дата-центре.

Q: Есть ли какие-то ограничения по размеру поисковой базы?
Технических ограничений нет. Наш ассистент для автоматического исправления ошибок в каталогах вообще работает без проблем со всем интернетом :)


⭐️Особенности технической реализации
Нулевая версия работала на LangChain/LLamaIndex c использованием GPT-4. Это стандартный способ начать работу над продуктом: “сначала докажи, что оно может работать на лучшей модели, прежде чем вбухивать недели в модель послабее”.

Думали, что этого и хватит, но вылезли грабли:
(1) база знаний - полная каша
(2) язык - немецкий, он не родной для LLM.
(3) предметная область очень специфичная и запутанная

Простые игры с индексами, размерами chunks и прочими параметрами особо не помогали. Айгиз перебенчмаркал индексы LangChain & LLamaIndex в разных комбинациях и конфигурациях.

🔧 SBERT для embeddings

В процессе быстро уперлись в производительность OpenAI Ada embeddings и пересели на локальные sentence transformers (SBERT). С ними хорошо, и это теперь дефолтовый вариант для всех продуктов.

🔬Тестовый dataset - наше все!

К слову, разные варианты embeddings моделей и конфигураций - тоже бенчмаркали. Во всех бенчмарках помогал тестовый dataset: попросили носителя языка пройтись по базе знаний и составить список простых вопросов, которые можно использовать для оценки качества системы. Благодаря ему все изменения были целенаправленными и итеративными.

🚧 LangChain/LLamaIndex заменили

В процессе итеративных улучшений оказалось проще заменить LangChain/LLamaIndex, на нативные вызовы OpenAI completion. Из NLP библиотек только остались numpy, sentence_transformers, openai. Причем основного кода - 400 строчек, считая начинку промптов 😃

Более быстрый OpenAI - это Azure OpenAI. И меньше вызовов ChatGPT

В процессе скорости OpenAI не совсем радовала. Особенно, она проседает, когда просыпается США. Для решения проблем:
(1) добавление asynсio и распареллеливание запросов
(2) переключение на Azure OpenAI, где скорости лучше
(3) добавление document re-rank, который может быстро отфильтровывать явно “мусорные” документы. Тем самым остается меньше работы на ChatGPT.

💪 ChatGPT-3.5 Turbo - достаточно хорош

Для работы системы используется ChatGPT-3.5, а не ChatGPT-4! В итоговой системе его “грузоподъемности” хватает для прохождения тестовых бенчмарков с достаточно хорошим качеством.

Это восхитительно влияет на бюджет, скорость и стабильность работы.

---
Окончание - ниже, ибо этот пост @llm_under_hood не лезет в лимиты Telegram 🤗

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/48

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

telegram from hk


Telegram LLM под капотом
FROM USA